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Abstract 

While the angular position of the main beam of the GBT is close-loop controlled using encoders on the 
mount axes, the actual position of the beam in topocentric coordinates is subject to a variety of perturbing 
influences, both quasi-random and deterministic. This document is a consolidation of a variety of topics 
associated with the construction of a static pointing model for the GBT that includes geometrical, 
gravitational, thermal, track, wind, inertial, and non-ideal material effects. There will be a companion 
document describing techniques for estimating the model parameters from meteorological, astronomical, 
and metrological data. 

History 
53.0 KTC 12/6/2006. Original draft. 
53.1 KTC 6/3/2008. Various additions and corrections.  
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1 Introduction 
The goal for pointing accuracy and stability of the GBT is, for the highest frequency operation currently 
envisioned, in the 1”-2” range. Our objective is to provide this kind of pointing performance over as large 
a fraction of the environmental conditions as possible, e.g., day-night and with wind. Another objective is 
to reduce the need for observation dedicated to maintaining the pointing model to the barest minimum. 

This document develops a pointing model from basic assumptions, and for the Gregorian configuration 
only since the pointing requirements for the low frequency receivers at prime focus are much less 
stringent and easily met. The discussion is somewhat pedantic since the notation and methods will be 
used in other documents. The model is a static model only: Effects such as structural vibration and 
dynamical servo errors are not considered. We do not consider the effect that aberration may have on 
pointing, e.g. the bias caused by coma.  
There will be a companion document that addresses the estimation of pointing model coefficients from 
astronomical observations and PTCS instruments, e.g., inclinometers, and assessment of pointing 
performance in comparison with the requirements1. 

2 Preliminaries 
Constructing a model of the GBT pointing requires work in a variety of coordinate systems associated 
with the alt-az mount, various optical and mechanical elements, and distortions of the structure itself.  

2.1 Cartesian coordinates and transformations 
The first quantities of interest are vectors (free vectors) that have magnitude and direction such as forces. 
Let irv be a vector in the ith Cartesian coordinate frame. Then 

ji
j

i rRr vv =  ( 1 ) 

where i
jR  is a rotation matrix that performs the alias transformation of the vector from the jth coordinate 

basis to the ith basis. An alias rotation (also called  passive) rotates the coordinates rather than rotating the 
vector in a coordinate system (called an alibi or active rotation). All rotations in this document are alias 
unless otherwise noted. The components of r will be denoted as ( )321 ,, xxx   where 1x  corresponds to the 
usual x, 2x  to the usual y, etc., so that 332211 ˆˆˆ xxxxxxr ++=v  where the circumflex (^) indicates a unit 
vector. When the coordinate systems are orthogonal, the rotation matrix is a real and orthogonal so  

( ) ( )Ti
j

j
i

i
j RRR ==

−1
 

( 2 ) 

where T indicates the transpose. Alibi rotations are just the inverse of the corresponding alias rotation. 

Some care must be exercised to distinguish true (or polar) vectors or scalars, such as force, from pseudo-
vectors or pseusdo scalars, such as angular momentum. Pseudo-vectors will undergo a sign change under 
an improper rotation, i.e., when the determinate of the real orthogonal rotation matrix is -1. Note the 
simple mnemonic of the subscript being the “from” coordinate system and the superscript being the “to” 
coordinate system (for rotation matrices) or the basis (coordinate system) for the vector. Hence a subscript 
will “cancel” the superscript to its right as in 

ij
i

k
j

k rRRr rr
= . ( 3 ) 
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Position (or bound) vectors transform differently as the translations of coordinate systems must be 
accounted for. Thus a bound vector will transform as  

i
j

ji
j

i orRr += vv
 ( 4 ) 

where i
jo  is the position vector of the origin of the j coordinate system in i coordinates. The distinction 

between bound and free vectors will be made by the context. 

2.2 Curvilinear coordinates 
There are cases where a more natural or convenient coordinate system is not the usual Cartesian one. For 
example, the deviations of the primary mirror from an ideal paraboloid of revolution are more 
conveniently expressed in an u-v-w coordinate system where the unit vectors wvu ˆ,ˆ,ˆ form a right-handed 
orthogonal system with the ŵ vector normal to the parabolic surface at the location ( )vu, , and both u and 
v are positions on level curves such as the hoop and spoke description of the surface. More on this topic is 
not within the scope of this document, but will become germane in later discussions concerning 
distortions of optical elements. 

2.3 Small angle perturbations, similarity, and linearity 
Once the basic geometrical components of the pointing model have been formulated we are generally left 
with very small perturbations to pointing. These small angle rotations have a desirable property that the 
rotation matrices commute to the 1st order (and thus the order of rotations is not important as opposed to 
say, the Euler angle convention for large rotations), and can be represented as  

j
i

j
i IS ε+=  ( 5 ) 

where the matrix j
iε  is skew-symmetric and we will use S to distinguish this as a small angle rotation. For 

a positive right hand rule for rotation and alias transformation,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0
0

0

12

13

23

αα
αα
αα

ε  

( 6 ) 

where 1α  is rotation around the 1-axis (the usual x axis), etc.  

A rotation matrix is a linear operator with an associated basis (coordinate system). The basis of the 
rotation can be changed via similarity transformation in order to allow us to change the order of the 
application of a chain of rotations. For example, given the chain 

ij
i

k
j

k rRRr rr
= . ( 7 ) 

We can change the rotation order by transforming the first rotation. Let  

j
i

k
j

i
j

k
j RRRR =  ( 8 ) 

Then  

ij
i

k
j

ij
i

k
j

i
j

j
i

ik
j

j
i

k rRRrRRRRrRRr rrrr
=== . ( 9 ) 
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As desired. This will be useful in order to place all small angle rotations in a particular frame, such as the 
reflector coordinate frame where the rotations are naturally aligned with the elevation and cross-elevation 
directions (the spherical unit vectors in the ground based frame). For example, the chain 

53
4

1
2

2
3

4
5

53
4

1
2

4
5

2
3

54
5

3
4

2
3

1
2

1 ˆˆˆˆ pRRSSpRRSSpSRSRp ===  ( 10 ) 

where  

2
1

4
3

4
5

3
4

1
2

4
5

2
1

2
3

1
2

2
3

RRSRRS

RSRS

=

=
. 

( 11 ) 

Expanding the product 2
3

4
5 SS  demonstrates that small angle errors sum to the 1st order 

termsorderhigherIIISS +++=++= 2
3

4
5

2
3

4
5

2
3

4
5 ))(( εεεε  ( 12 ) 

and thus we can aggregate the perturbations simply. The most important side effect is that we can now 
treat each small pointing perturbation separately, i.e., without regard to the frame that it occurs in, as long 
as the perturbation is similarity transformed appropriately at the end, and simply sum the collection of 
perturbation matrices. 

2.4 Influence coefficients and plate scales 
Under very general conditions (linearity of the structure) there is a linear relationship between torques or 
forces applied at some node in the structure to the deflections and rotations of some other node (perhaps 
the same node) in the structure. Using qv and Q

v
 to denote vectors of generalized deflections and forces 

respectively,  

QCq
vv =  ( 13 ) 

where C is referred to as the stiffness matrix. Mixed terms may occur, e.g., a rotation at node i due to 
force at node j. A reciprocity theorem requires that the C matrix is symmetric, i.e., if a force Qi at node i 
produces a deflection qj at node j, then the same force applied at node j will produce the same deflection 
at node i. Another consequence of structure linearity is that the effects of the generalized forces or 
deflections superpose, so we can sum individual effects to determine the net effect of several forces or 
deflections. 

We assume a similar relationship between the rigid body generalized deflections of an optical element, 
e.g., the subreflector, and the pointing perturbation resulting. These are the plate scales2 of the element, 
e.g., pointing error on the sky is a linear function of the translation of the subreflector with respect to its 
design position. To be more precise, the rigid body deflections are the change in pose and position of e.g.  
minimum-squared-error (MSE) fit of the ideal element shape with respect to the actual shape of the 
element*. This assumption is true only for small deflections, where small is determined by the optical 
properties of the system- As a practical matter deflections that result in pointing changes on the order of a 
1000 arc-seconds or less are acceptably small. Small deflections may also have considerable effect on net 
wavefront errors and beam properties. 

2.5 The design coordinate systems 
GBT Drawing C35102 Rev C details the design coordinate systems and element orientations. See Figure 
4 though Figure 8. The following table is a recapitulation of the drawing, converted to SI units and with 
                                                      

* The metric for best fit surface that has the same position for maximum sensitivity as the actual surface may be 
other than the MSE.  
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the enumeration of frames that we will subsequently use. Note that the design coordinates are with respect 
to idealized (and not necessarily measurable with requisite accuracy) rotations. 

Enumeration C35102 
Name 

Rotation Translation Comments 

1 Base   

LocalUpx
Northx
Eastx

=
=
=

3

2

1

ˆ
ˆ
ˆ

 

Vertical 
reference is track 

2 Alidade 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
−−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

100
0)()(
0)()(

100
010
001

1
2 θπθπ

θπθπ
CS
SC

R  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000.0
000.0
000.0

1
2o  azimuth

R

=

=

θ

11
2  

LHR + from 
North 

3 Elevation 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

)()(0
)()(0

001
2
3

φφ
φφ

SC
CSR  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

260.48
000.0
000.0

2
3o  elevation

R

=

=

φ

12
3  

RHR + from 
horizon 

4 Reflector 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

3
4R  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

000.5
983.62

000.0
3
4o  

13
4 =R  

5 Prime 
Focus 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0)794.0()794.0(
0)794.0()794.0(
100

4
5

CS
SCR  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000.60
000.0
000.0

4
5o  

14
5 =R  

6 Subreflecto
r 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0)641.0()641.0(
0)641.0()641.0(
100

4
6

CS
SCR  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

802.63
292.4

000.0
4
6o  

14
6 =R  

Table 1. Design coordinate frames in meters and radians.  

 

3 The pointing model 
We will now compose the pointing model by first constructing the geometric (ideal) relationship between 
the base coordinates and the principle ray of the optical system and then consider a sequence of small 
angle effects. The result will be a parametric model with the estimation of parameters addressed later. 
Note that azimuth and elevation angles are strictly the error-free encoder angles- Which might not be 
easily converted to astronomical spherical angles due to the assembly of pointing perturbations. In fact, 



PTCS/PN/53.1                                                                                                                                                          8 
the purpose of the pointing model is to provide an invertible relationship between the two. There may be 
cases where various parameters of the pointing model are not linearly independent, which could present 
problems in the estimation of these parameters. If so, regularization of the model will need to be 
addressed to achieve, as much as possible, the uniqueness of a model solution. 

3.1 The ideal pointing model 
The optic is aligned so that the principle ray in the reflector coordinate frame is just 44

3 ˆˆ px = where 
4p̂ denotes the principle ray in the reflector coordinates. Thus the principle ray in the base coordinate 

frame is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

)(
)()(
)()(

ˆˆ 43
4

2
3

1
2

1

φ
θφ
θφ

S
CC
SC

pRRRp , 

( 14 ) 

the base coordinate spherical angles of the principle ray are ),( φθ as expected 

)(

)(

1
2

1
1

1
3

p
p

ArcTan

pArcSin

=

=

θ

φ
, 

( 15) 

and the spherical unit vectors are  

4
2

4
111

1

4
1

4
111

1

4
3

411

ˆˆ

)(
)()(
)()(

ˆˆˆ

ˆˆ

0
)(

)(
ˆˆˆ

ˆˆˆˆ

x
Cos

CosSin
SinSin

d
pd

d
pd

xSin
Cos

d
pd

d
pd

xp

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

==

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−==

==

−

−

φ
φ

θφ
θφ

φφ
φ

θθ
θ

θθ
θ

ρρ

 

( 16) 

where θ̂  and φ̂  are the cross-elevation and elevation directions respectively. 

3.2 Geometrical errors in the ideal model 
Geometrical errors are just the errors due to differences between the design frames (actually, the positions 
and pose of e.g., the elevation axle) and the telescope as constructed. For convenience we will formulate 
the errors in the cross-elevation and elevation directions, i.e., the pointing error will be expressed as  

44444 ˆˆ~̂ˆ φφθθ ∆−∆=+−=∆ pppv  
( 17 ) 

where 4~̂
p is the measured pointing direction and 4p̂ is the predicted (ideal) pointing direction. The effect 

of optic rotations is degenerate with elevation axle rotations (see below) but kept separate in anticipation 
of direct measurements of elevation axle pose using inclinometers. 
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Since processed† astronomical observations (“Jack Scans”) measure pointing errors “on the sky”, or 

4θ∆ and 4φ∆ , we note that for some small angle perturbation S the on the sky error will be the elements 
of the similarity transformed ε  

( )

( ) 412
1

3
2

4
3

3
4

2
3

3
2

4
3

4

4

12
1

3
2

4
3

12
1

3
2

4
3

2
1

3
2

4
3

4

ˆˆ

0
ˆˆ

ppRRRRRRR

pRRRpRRRSRRRp

εε

φ
θ

ε

==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆−
∆

==−=∆v
. 

( 18) 

For convenience we enumerate several 4p̂ε  given Table 1: 

( )
{ }

( )

( ) 4
41

2
43

4
4
3

4
3

1

23
43

4
2
3

3
2

4
3

4
2

21

123
43

4
2
3

1
2

2
1

3
2

4
3

4
1

ˆ
0

ˆˆ

0

)()(
ˆˆ

0
)()(

)()()()(
ˆˆ

ppRRp

SinCos
pRRRRp

SinCos
SinCosSinCos

pRRRRRRp

εα
α

εε

α
φαφα

εε

θαθα
θαθαφφα

εε

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

+−
==

. 

( 19) 

Note that terms that are second order small occur, e.g., )()( 23 θαφα CosCos , which are 
effectively zero and will be removed when the various contributions are summed. 

3.2.1 Azimuth encoder offset and track tilt 

An offset of the azimuth encoder with respect to true north is a rotation around 1
3x̂ direction, and 

track tilts are rotations around 1
2x̂ and 1

1x̂ , so 

{ }

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

+−
==∆

0
)()(

)()()()(
ˆ 21

123
4

1
4 θαθα

θαθαφφα
ε SC

SCSC
ppv . 

( 20) 

Note that the tilt of the track is with respect to the topocentric coordinate system used by the 
astronomical pointing calculations, not with respect to local gravity. In fact, measurements of 
track tilt using inclinometers combined with astronomical inferences results in a measurement of 
the deflection of local gravity with respect to topocentric coordinates. The result is in agreement 
with model predictions of local gravity deflection, on the order of arcseconds. This will be 
discussed more fully elsewhere.  

                                                      

† It might be easier (and less prone to error) to use un-processed, direct encoder differences. In this case the model 
would be formulated with 1pv∆ as the pointing error. 



PTCS/PN/53.1                                                                                                                                                          10 

3.2.2 Elevation encoder offset and elevation axle skew 

Similarly, encoder offset is a rotation around 2
1x̂  and the axle skew is rotations around 2

2x̂  and 2
3x̂ , 

so 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=∆

0

)()(

1

23
4 α

φαφα SinCos
pv . 

( 21) 

3.2.3 Optical alignment 
While plate scales and misalignment of the optical elements could be separately calculated for a 
net pointing error of the optic with respect to the reflector frame, the result is just a set of linear 
constraints on the combinations of position and pose errors of the elements. There are 15 degrees 
of freedom‡, but only two observables, the cross-elevation and elevation pointing residuals. The 
net pointing error due to alignment error is just  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=∆

0
1

2
4 α

α
pv . 

( 22) 

3.2.4 The pointing model 
The composite pointing error is 

{ }

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

+−
=∆

00

)()(

0
)()(

)()()()(

,1

,2

,1

,2,3

,2,1

,1,2,3
4

o

o

e

ee

aa

aaa SinCos
SC

SCSC
p α

α
α

φαφα
θαθα

θαθαφφα
v

 

( 23) 

Where the subscripts of a, e, and o denote contributions from the azimuth, elevation, and optic 
alignment errors. Collecting terms and removing second order small contributions, we get 

( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∆−
∆

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−+

−−++−−
=∆

00
)()(

)()()()()(

,1,2,1,1

,2,1,3,3,2,2
4 φ

θ
θαθααα

θφαθφαφαφαφαα
CS

CSSSCCosSin
p aaoe

aaaeeo
v

 

( 24) 

There are seven independent rotations (the 4
3x̂ rotation is around the pointing direction and hence 

does not cause a pointing error, but may change polarization), but only five independent 
coefficients of the two-dimensional trigonometric series- Coefficients for track tilt are present in 
both the elevation and cross-elevation errors. Note that while the basis functions for the series are 

                                                      

‡ The three rotational degrees of freedom of a receiver feed with respect to the phase center might effect efficiency 
(and perhaps polarization), but pointing should be unchanged. 
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not orthogonal on ]
2

,0[),2,0[ πφπθ ∈∈ , they are linearly independent. The correspondence of 

these terms to the other two pointing model representations is:  

Physical 
Meaning 

Error 
Direction 

Basis Coefficient GBT TPOINT3 
Coefficient 

Condon Series 
Coefficient4 

Horizontal 
Collimation 

Cross-
elevation 

1 
o,2α−  CA d0,0 

El Axle 
Collimation 

Cross-
elevation 

)(φS  e,2α−  NPAE b0,1 

Az Zero Cross-
elevation 

)(φC  ea ,3,3 αα +  IA d0,1 

East Tilt Cross-
elevation 

)()( θφ CS  a,2α−  AW b1,1 

North Tilt Cross-
elevation 

)()( θφ SS  a,1α−  AN  a1,1 

El Zero Elevation 1 
oe ,1,1 αα −−  -IE d0,0 

East Tilt Elevation )(θS  a,2α  -AW c1,0 

North Tilt Elevation )(θC  a,1α−  AN d1,0 

Table 2. Correspondence of pointing model coefficients for geometrical errors. 

3.3 Gravitational distortions 
The gravity vector, nominally down in the base coordinates, appears to rotate in the tipping structure 
coordinates as telescope elevation changes. This, and effects of possible imbalance in the tipping structure 
requiring torques around the elevation axle, cause varying forces and moments in the structure as 
elevation angle changes. For this portion of the model we consider the optical elements to be rigid and 
attached to the massless structure with flexible trusses, i.e., the shape of an element does not change, but 
its position and orientation within the structure might. Distortion of the elements themselves will cause 
wavefront errors and potentially pointing errors. 

The effects are decomposed into contributions from the optics (tipping structure), the change in pose of 
the elevation axle, and rotation of the elevation encoder.  

3.3.1 Translation and rotation of optical elements 
The gravity vector in elevation coordinates, including the effect of elevation axle misalignment, is 
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( 25) 

Thus the deflections and rotations associated with an element i will be 
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And the change in pointing will be 

3

,26

,11
3

3

.....
.....

gi
i

i FC
t

t v
∆⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

∆−
∆
φ
θ

 
( 27) 

where the coefficients tij are the plate scales associated with the translation and rotation of the 
element. For the actual values of the small angle rotations seen in practice, the additional terms 
(e.g., e,3α )  in  ( )φ3

gF
v

∆  are small enough to drop. However, even though the gravity vector is 
then always in the vertical plane (in the reflector coordinates), this does not mean that there will 
be no cross-elevation errors- Rather, this depends upon the nature of stiffness associated with the 
element mounting. Anticipating that we will estimate this effect using astronomical observations, 
we can combine the T and C matrices and various constants. For any one element, after removing 
the constant term in 3

gF
v

∆  we have 
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Collecting all of the optical elements results in 
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3.3.2 Deflection of the alidade 
The moment around the elevation axle bearings can change as a function of elevation angle due to 
mass imbalance of the tipping structure. Suppose the position of the center of gravity of the 
tipping structure is 3

tcgrv  and the mass mt. Then the moment applied to the alidade is  
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( 30) 

Where ×  is the usual vector cross product and we have again approximated the gravity vector in 
the vertical plane. The cross product can be formulated as a linear operation using a skew-
symmetric matrix of the moment arm vector. The reaction of the alidade and elevation drive 
provides for static equilibrium, i.e. (see Figure 3) the forces and moments applied to the tipping 
structure must be zero 
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Where the elevation drive mechanism produces force tangent to the bull gear (always in the 
2
2x̂ direction). The force at the bull gear is determined by the moment relationships 
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Where the notation 2
6,3r indicates the 3 component ( 2

3x̂  or z direction) of the vector 2
6r
v . The 

complete set of constraints requires that 
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Thus the axial forces (parallel to the elevation axle) remain indeterminate and must be determined 
with an alternative. Without proof we assert that the functional form must be  

( ) ( )φφ CosbSinaF +=2
9,1 . ( 34) 

Note that the “y” inclinometer data as a function of elevation5 at least provides some plausibility 
that the axial compression/tension is a real effect, and that “potato chip” deformations of the 
primary may result in turn causing astigmatism in the optical system. 
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The result of the reactions is to deflect the elevation bearing castings and change the pose of the 
elevation axle. Let 9r

v∆ and 10rv∆ be the deflections due to 9F
v

∆  ( )0()( 99 FF
vv

−= φ ) and 10F
v

∆ . 
Noting that the alidade towers have different stiffness (see PTCS Project Note 46) but assuming 
that to the first order the distance between the elevation bearing centers is constant, the resulting 
rotation of the axle is 
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Let j
iC be the stiffness of node i with respect to a force applied to node j. Then by superposition, 

combining various coefficients, and using the functional form of 96 , FF
vv

∆∆  and 10F
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By combining stiffness matrices and coefficients we arrive at  

( ) ( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+−

+−+
=

00
00

0

22

33

2233

φφ
φφ

φφφφ
ε

SinbCosa
SinbCosa

SinbCosaSinbCosa
 

( 37) 

And finally determine the change in pointing using ( 19) 
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3.3.3 Rotation of the elevation encoder 
Similarly the elevation axle encoder, attached to the manlift side elevation bearing casting, could 
experience a rotation due to elevation change and tipping structure mass imbalance. The rotation 
around the 2

1x̂  direction will be a linear function of the forces applied to the alidade, and so we 
can directly write 
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3.3.4 Combined geometric and gravity pointing model 
Combining the pointing changes due to the effect of gravity yields 
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( 40) 

 

Physical 
Meaning 

Error 
Direction 

Basis Coefficient Current Model 
TPOINT 
Coefficient 

Condon Series 
Coefficient 

Horizontal 
Collimation 

Cross-
elevation 

1 
ao ,1,2 βα +−  CA d0,0 

El Axle 
Collimation 

Cross-
elevation 

)(φS  oe ,13,2 βα −−  NPAE b0,1 

Az Zero Cross-
elevation 

)(φC  oea ,12,3,3 βαα ++ IA d0,1 

East Tilt Cross-
elevation 

)()( θφ CS  a,2α−  AW b1,1 

North Tilt Cross-
elevation 

)()( θφ SS  a,1α−  AN  a1,1 

Asymmetric 
Alidade Twist 
(Imbalance) 

Cross-
elevation 

( )φ2S  a,3β   b0,2 

Symmetric 
Alidade Twist 
(Imbalance) 

Cross-
elevation 

( )φ2C  a,2β   d0,2 

El Zero Elevation 1 
oe ,1,1 αα −−  -IE d0,0 

East Tilt Elevation )(θS  a,2α  -AW c1,0 
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North Tilt Elevation )(θC  a,1α−  AN d1,0 

Asymmetric 
Gravity 

Elevation )(φS  oe ,23,2 ββ +−  HZSZ b0,1 

Symmetric 
Gravity 

Elevation )(φC  oe ,22,1 ββ −−  HZCZ d0,1 

Table 3. Geometry and gravity pointing model. 

3.3.5 Focus tracking and active surface servomechanisms 
Both focus tracking and active surface adjustments to compensate for gravitational distortions 
have the potential to introduce pointing errors. The servo mechanisms that implement the 
subreflector motions and primary surface adjustments may fail to achieve the commanded 
positions due to encoder or position sensor errors and servo control loop error, i.e., failing to 
drive the difference between commanded and sensed position to zero. For example, the active 
surface LVDT position sensors are known to have significant non-linearity, and the servo control 
is a “bang-bang” loop6. The linearity of the Stewart Platform link length sensors also anecdotally 
are nonlinear, and there exists a possibility that the kinematic model of link length to subreflector 
position and pose is in error due to calibration of the link endpoints. There is also a possibility 
that the position commands, e.g., intended to adjust focus without causing pointing variations, are 
incorrectly constructed. 

The natures of the error functional forms are largely unknown. Hysteretic errors would cause 
non-linear and memoried errors (e.g., dependent upon the previous motion’s direction). 
Kinematic errors would be smooth but with somewhat complicated error dependence upon 
current position (in the case of the Stewart Platform). Command algorithm errors could be either 
smooth or discontinuous. 

Given current pointing performance it is possible to bound the magnitude of the resulting 
pointing errors, which are modestly small, and comparison of pointing errors from scans that run 
in different directions or start from different positions bound the hysteretic effects to similarly 
small pointing errors. Nonetheless, these potential errors should be remembered when examining 
the residual pointing error after application of a pointing model. It is likely that they will be one 
of the dominant limits to pointing accuracy. 

3.4 Track irregularity 
The azimuth track tilt terms included in Table 2 are the global tilts of the best fit plane (BFP) to the entire 
circumference of the track. Track elevation, however, potentially varies over the circumference due to 
fabrication, foundation subsidence, wear effects, and thermal effects. These local variations influence 
pointing by causing a local tilt of the BFP (the BFP with respect to the actual contact points) and by 
introducing forces and moments at the alidade corner weldments- The interface is overconstrained with 
16 contact points (the truck wheels). The suspension of each truck, via spherical truck bearings and flex 
plates, removes to a great extent two of the three orthogonal forces applied by the track to each corner 
weldment and two of the three moments (torques). Hence there are a total of eight degrees of freedom  for 
the corners representing one force (nominally in the vertical direction) and one torque (nominally around 
the radial from the pintle bearing) for each corner, and two additional torques and three forces associated 
with the reaction of the pintle bearing although the forces in the horizontal plane are nominally zero (See 
Figure 3). We assume that all wheels are in contact with the track at all times. 

The deviation of the track centerline from a plane introduces a pointing shift due to a local tilt (the local 
best fit plane) and due to distortions of the alidade caused by the forces and moments introduced at the 
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corner weldments and potentially the pintle bearing. In the absence of detailed information on the various 
stiffnesses and the actual track profile there is not much to be gained in constructing a detailed description 
of the kinematics other than to note that there are two symmetries that can be used: Pure tilt must have the 
form 
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( 41) 

and deformation must have a 180 degree asymmetry 

( ) ( )πθεθε +−= dd  ( 42) 

as long as the scale length of track elevation error is large compared to the possible deviation of truck 
positions from the design locations. 

The orthogonal inclinometer sets mounted on the elevation bearings (see PTCS PN 44) are used to 
measure the rotations of the bearings as a function of azimuth angle, and then detrended for temperature 
variations, wind effects, the global tilt of the track, and residual structural vibrations. Note that a side 
effect of the detrending process is an explicit measurement of the AN and AW tilt terms 
( a,1α− and a,2α− ). 

3.4.1 Local tilt§ 
Serendipitously, the inclinometers indicate that the alidade undergoes a tilt, rather than a 
deformation, around the 2

2x̂ direction (normal to the plane including the elevation axle and pintle). 
Let ( ) ( ) ( )θξθξθξ 2

10,1
2

9,2
2
9,1 ,, ∆∆∆ and ( )θξ 2

10,2∆ be the detrended inclinometer measurements 

from GBT Project TPTCSKTC041129 for rotation around the 2
1x̂ and 2

2x̂ directions at locations 

9r
v and 10rv (see Figure 3). 2

9,2ξ∆ and 2
10,2ξ∆ agree to a remarkable extent. They approximately 

exhibit the appropriate 180º asymmetry, as shown in Figure 1. The source of the differences in 
the asymmetry is not known. 

                                                      

§ The measurements in this section have been substantially improved, with much greater resolution on the track and 
various corrections. See reference 14. 
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Figure 1. Local tilt.  

Since the local tilt has a 90 degree symmetry, we have ( ) ( ) ( )[ ]θξθξθλ 2
10,2

2
9,2,2 2

1
∆+∆−=t  and 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

2,2,1
πθλθλ tt  where the signs have been adjusted for the polarities of the inclinometer 

measurements and the expected value (average) of the two inclinometer angles. 

Alidade tilt rather than distortion in this direction is probably due to a much higher stiffness, in 
turn probably due to the elevation axle itself.  

3.4.2 Alidade twist 
Measurement of the elevation bearing casting rotations in the orthogonal direction, around 
the 2

1x̂ axis, show that the castings rotate in opposite directions under the influence of track 
irregularities (Figure 2).  



PTCS/PN/53.1                                                                                                                                                          19 

 

Figure 2. Alidade Twist 

Part of the rotation is due to deformation, but part is also due to the local tilt of the alidade. Thus 
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Where ( )θξ 2
9,1

~
∆  and ( )θξ 2

10,1
~

∆  are the rotations due to distortion of the alidade. The deflections 
2

9r
v∆ and 2

10rv∆  are linear functions of the respective rotations. The magnitude of the resulting 
rotation is on the order of arcseconds, so we can approximate the stiffness of the alidade towers as 
equal without significant error. Thus for ( ) ( ) ( )θξθξθξ 2

10,1
2
9,1

2
1 ∆−∆=∆  we have 
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For this specific case the difference of inclinometers can be approximated as  

( ) ( ) ( )θδθθξ +−=∆ 5.10.26.12
1 Sin  ( 45) 

where the standard deviation of ( )θδ  is 0”.7. This suggests that the twist of the alidade is 
dominated by large scale error in track elevation rather than moments introduced at the corner 
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weldments, and could possibly be associated with the circumferential variation of foundation 
stiffness, e.g. the four grade beam contributions. 

3.4.3 Elevation encoder rotation 
The pointing error due to elevation encoder rotation in the alidade frame will be 
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Note that the mass imbalance rotation (a function of elevation angle, in 3.3.3) is independent of 
the track induced rotation (a function of azimuth angle). 

3.4.4 Combined geometric, gravity, and track pointing model 
The complete contribution of track irregularity is just the sum of the local tilt, alidade distortion, 
and elevation encoder rotation errors. The alidade distortion coefficients must be estimated by 
making measurements with inclinometers concurrently with astronomical pointing runs. 
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( 48) 

Table 4 lists the contributors for the combined geometry, gravity, and track model. Alpha 
coefficients correspond to geometry terms, beta coefficients correspond to gravity terms, and 
lambda coefficients correspond to track terms.  
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Physical 
Meaning 

Error 
Direction 

Basis Coefficient GBT 
TPOINT 
Coefficient 

Condon 
Series 
Coefficient 

Horizontal 
Collimation 

Cross-
elevation 

1 
ao ,1,2 βα +−  CA d0,0 

El Axle 
Collimation 

Cross-
elevation 

)(φS  ( )θλβα 2,13,2 −−− oe  NPAE b0,1 

Az Zero Cross-
elevation 

)(φC  ( )θλβαα 3,12,3,3 +++ oea
IA d0,1 

East Tilt Cross-
elevation 

)()( θφ CS  a,2α−  AW b1,1 

North Tilt Cross-
elevation 

)()( θφ SS  a,1α−  AN  a1,1 

Asymmetric 
Alidade Twist 
(Imbalance) 

Cross-
elevation 

( )φ2S  a,3β   b0,2 

Symmetric 
Alidade Twist 
(Imbalance) 

Cross-
elevation 

( )φ2C  a,2β   d0,2 

El Zero Elevation 1 ( )θλαα 1,1,1 −−− oe  -IE d0,0 

East Tilt Elevation )(θS  a,2α  -AW c1,0 

North Tilt Elevation )(θC  a,1α−  AN d1,0 

Asymmetric 
Gravity 

Elevation )(φS  oe ,23,2 ββ +−  HZSZ b0,1 

Symmetric 
Gravity 

Elevation )(φC  oe ,22,1 ββ −−  HZCZ d0,1 

Table 4. Geometry, gravity, and track  pointing model. 

 

3.5 Thermal effects 
The temperature and temperature gradients of the structure can effect pointing. Gradients cause 
differential expansions that in turn cause additional stresses in the structure, and there is a small change in 
the elastic modulus of structural materials as a function of temperature.  

The latter effect is almost always ignored as it is very small over normal environmental temperature 
changes, but when the desired pointing accuracy is very small compared to the pointing-equivalent 
motion of a component (as it is for the GBT feedarm), relatively small changes in elastic modulus can be 
significant. The current pointing model has a maximum elevation pointing correction change due to 
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gravity of about 350” (from zenith to horizon) which is consistent with the expected displacements and 
the plate scale of feed arm motion. The modulus of carbon steel exhibits a -0.5% / C temperature 
dependence7. 

3.5.1 Differential expansion 
The model and rationale for correction of gradient effects is described in a previous PTCS Project 
Note8. This model could be improved by more temperature sensors and or better algorithms, but 
the performance to date is adequate for periods where GBT temperatures are not changing 
rapidly. Particular improvement was obtained in stabilizing focus, somewhat less improvement in 
elevation pointing, and little improvement in cross-elevation. 

3.5.2 Modulus of elasticity 
The temperature dependence of the modulus is probably only significant in 
the o,22β and o,23β terms in Table 3 and Table 4. The magnitude of the effect can be approximated 
by noting that a 1º C bulk feed arm temperature change could cause 1”.75 pointing error from 
zenith to horizon. This effect is not modeled in PFM 5C. 

3.6 Wind effects 
Some attempts have been made to approximate the quasi-static effect of wind on pointing. Hypothesize 

that the change in pointing is proportional to the kinetic head 2

2
1 vρ with a different constant of 

proportionality in elevation and cross-elevation, and that the constants are independent of elevation. Then 
decompose the incident wind velocity into azimuth relative orthogonal components so that  
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The off-diagonal terms could be made non-zero (reflecting a belief that the structure reacts in an 
asymmetric way). The most obvious defect in this model is that it does not take into account the effect of 
tipping structure pose. Pose effects could be predicted by CFD (computational fluid dynamics) but the 
structure is complicated enough that it would infeasible in practice. Alternatively the effect could be 
estimated using a large dataset including a range of wind speeds for a set of elevation angles, but the 
existing data are not dense enough in this part of the parameter space for this to yield useful results. Given 
that the number of parameters to estimate is already quite large (and fitting is ill-conditioned, see below), 
this model is not included in the current pointing model (PFM 5C). 

Dynamical effects are even more problematic: Von-Karman buffeting and pumping of the structure’s 
vibrational modes are conceivably significant, but very hard to model. These effects are also not included 
in PFM 5C. Instead, model fits utilize data collected with wind speed below some threshold to limit the 
confounding effects. 

3.7 Inertial effects 
When the structure is moving at constant angular rates centrifugal and Coriolis forces are present. The 
effects can be bounded by comparison with the gravitational acceleration. Assuming a maximum tracking 
rate of 250 micro-rad/sec and a maximum 100 m moment arm, the centrifugal forces will be less than 0.64 
x 10-6  G, or equivalently a rotation of the apparent gravitational vector of about 0.64 micro-rad. Given 
that the most sensitive component will be the feed arm and that the pointing effect of an elevation change 
of 90º is about 350” in gravitational deflection, the effect of centrifugal accelerations will be on the order 
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of 0.2” x 10-3. Coriolis forces will be of the same order given feed arm velocity (in the rotating frame, and 
due to vibration) of less than 5 mm/sec. Thus neither will be of any consequence. 

Tangential acceleration due to dithering of azimuth and elevation input torques is significant but is 
mediated through the response of the structure as a system of coupled simple harmonic oscillators. This is 
the subject of current work on modeling and predicting structure vibrational responses and is not 
appropriately included in a static pointing model. Half-power track experiments9 show that vibrational 
pointing errors can be on the order of 5”. We assume that these contributions are incoherent from Jack 
Scan to Jack Scan, and thus are suppressed when pointing data are fit by the pointing model. 

3.8 Encoder errors 
The BEI electro-optical azimuth and elevation encoders exhibit four types of errors: Less than perfect 
alignment of the encoder shaft to the telescope axis results in a periodic error, cyclic (fine cycle) encoder 
errors due to vernier effects, nonlinearities associated with the encoder wheel, and backshaft windup due 
to encoder friction. A calibration report for one of the installed encoders indicates that the net RMS error 
(less alignment and windup) is 0”.63. 

3.8.1 Windup 
Friction in the encoder assembly results in torque applied to the axis backshaft, in turn causing a 
windup in the backshaft and a resulting hysteretic angle measurement error. Design studies10 
predict an elevation error of 0”.41 and an azimuth error of 0”.69 for azimuth. If the effect is 
modeled as a velocity-independent (i.e., non-viscous) term, an indicator of axis rate can be used 
as a regressor 
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where ( ) 1=θ&I  if 0>θ& and 1−  otherwise, similarly for φ& . Model PFM5C estimates the 
coefficients to be -0”.54 for azimuth and -0”.99 for elevation. 

Note that in the control system implementation this correction is multiplied by a hyperbolic 
tangent function of a scaled axis angular rate in order to prevent limit-cycle behavior of 
corrections when axis angular rates are small11. 

3.8.2 Alignment 
The coupling between the axis backshaft and encoder can be modeled as a Hooke joint. Pointing  
error due to misalignment is then  
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where aγ  and eγ  are the azimuth and elevation encoder misalignments, respectively. For small 
misaligments this can be approximated by  
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Note that the error is periodic in twice the axis angle which is distinct, with the exception of the 
tipping structure imbalance terms, from all other terms in the model. The current pointing model 
does not attempt to estimate or correct for this error. Design studies10 predicted the error to be 
1”.41. 

3.8.3 Cyclic error 
Due to the design of the encoders, there is a fine-cycle error (periodic error over small angular 
excursions). Calibration data from one of the installed encoders12 indicates a fine cycle error of 
approximately 1”. The pointing model does not attempt to correct this error, nor is it clear that it 
is feasible to do so. The error can be considered as a zero-mean random contribution. 

3.8.4 Nonlinearity 
The same calibration indicates a maximum absolute difference (less cyclic error) of 
approximately 2”.2. It may be possible to introduce encoder calibration tables into a pointing 
model to correct for this error, but the current model does not do so. 

4 Additional modeling topics 
4.1 Refraction correction 
The difference between the ideal (encoder) and measured (astronomical) beam direction in ( 17 ) is 
determined at the aperture and hence atmospheric refraction effects must be removed11.  The refraction 
model13 has unknown error properties and these could be significant at very low elevations. This potential 
problem is circumvented by not using very low elevation data in model fits. 

4.2 Inverting the model 
The pointing model predicts error given a commanded azimuth and elevation: The GBT control system 
requires the opposite of this, i.e., the commanded azimuth and elevation that yield the desired pointing 
direction. The pointing model is implemented in the GBT control system as formulated here, and then an 
iterative (fixed-point) algorithm is used to determine the commanded angles that yield the desired 
pointing11.  

4.3 Model parameter stability 
Model parameters have physical interpretation, e.g., gravitational deflection of the feed arm, and it 
desirable that the inferences be stable from model fit to model fit. For example, if the gravitational terms 
show a drift over a long period or discontinuous change it would be an indication that the structure mass 
to stiffness ratio is changing, and could indicate impending problems with structural stability.  

The current pointing model, PFM 5C, is a weighted least squares fit of 32 parameters (including thermal 
model terms) and used about 9900 astronomical measurements in the fitting process. The 2-norm 
condition numbers for azimuth model, elevation model, and focus model were respectively 75, 226, and 
285. The large condition numbers indicate substantial sensitivity of the model to perturbations in the data 
such as noise in measurements and random effects from dataset to dataset, e.g. seasonal variations in the 
tilt of the azimuth track. Consequently model terms are not stable, and potentially are overfit even though 
the pointing measurement datasets are comparatively large.  
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Several alternatives to weighted least squares fitting, e.g. Tikhonov regularization and/or random effects 
modeling, could be used to improve the properties of the model fit. This will be discussed in the 
companion methods document. 

4.4 Error budgets 
Some work has been done to characterize errors associated with data used for model fitting14 in an effort 
to establish bounds on expected performance as well as mechanization of the performance specification1. 
Of particular note is the uncertainty in angular position of the astronomical sources that are used for 
pointing data collection15.  

5 Parameter estimation topics 
Given a model which is a subset of the model terms discussed above, the next problem is estimation of 
the model parameters. How does one go about estimating them, and what additional information, beyond 
the parameters themselves, is desirable? How does one go about collecting the data to fit to? How should 
these data be preprocessed before used for estimation? Detailed answers to these questions will be 
included in a companion document. Here’s an overview. 

The simplest approach to parameter estimation is to optimize the model with respect to a least-squares 
criterion. This method has nice properties in that the model is linear and the fit can be accomplished via 
the pseudo-inverse of the regressor matrix. If the errors in measurements are Gaussian, then the model fit 
is simultaneously the maximum-likelihood estimate of parameters and the Bayes optimal estimate. 
Supposing that we can estimate the parameters of an assumed Gaussian measurement error model (e.g., 
via a bootstrap), then one can use a weighted least squares estimate that has better outlier rejection 
properties. If the errors cannot be estimated, a reweighted least squares fit can be used to reject outliers. 

Parameter estimates should have confidence intervals associated with them, both for determining the 
robustness of any one parameter value and so that some parameters can be used for diagnostics. For 
example, if a sequence of model fits over time indicate a 95% confidence that the stiffness of the feed arm 
has changed, the structure should be examined for incipient instability. 

The condition number of the regressor matrices are large, indicating that some model terms are nearly 
linearly dependent. Thus small perturbations in measured data can result in large changes in the values of 
parameter estimates. This is undesirable for several reasons: Unstable parameter estimates disallow 
determining e.g. problems with structural stability, the physical meaning of the parameters is 
questionable, and the model will not generalize well, i.e., the data are over-fit. A very useful approach 
that mitigates the high condition number is to use some form of regularization to condition the estimates 
with prior knowledge. For example, model thermal coefficients can be bounded. While the resulting 
model fit will have e.g. higher squared error, it will perform better in practice. 

Some model terms, e.g., the track model, almost certainly change substantially over time. When the data 
used to fit the model are taken over an extended interval in time (as they have been), these changes can 
result in poor fitting of other parameters. One approach to this problem is to employ random effects 
modeling which attempts to capture the variation in the parameter over subsets of the complete dataset.  

There is a tendency to think that more data are better, but this is not always the case. In the previous 
paragraph we suggest that more data could cause deterioration of parameter accuracy unless special 
methods are used. It is also the case that there is a cost (lost observing time) associated with pointing data 
collection. Under a set of reasonable assumptions (error models) and given an objective for parameter 
accuracy and model performance, one can infer the amount of data that will be required. 

6 Summary and recommendations 
While the angular position of the main beam of the GBT is close-loop controlled using encoders on the 
mount axes, the actual position of the beam in topocentric coordinates is subject to a variety of perturbing 
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influences, both quasi-random and deterministic. This document is a consolidation of a variety of topics 
associated with the construction of a static pointing model for the GBT that includes geometrical, 
gravitational, thermal, track, wind, inertial, and non-ideal material effects.  

Most of the recommendations that can be made are more closely associated with the estimation of 
parameters (see the section on parameter estimation topics). At this point in time the static (blind) 
pointing model appears to be good enough for GBT operations at 90 GHz. Some improvement could be 
made if it is possible to calibrate out encoder non-linearity. Dynamical errors during tracking due to GBT 
vibration, excited by the servo-control system or wind, are subject of some ongoing studies. It is also 
possible that more accurate thermal corrections could be had via a more dense sampling of structural 
temperatures and/or a better thermal model of the GBT including radiative and conductive transport. 
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Figure 3. Alidade free body diagram. 
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Figure 4. Foci Arrangements and Coordinate Systems for the GBT, Sheet 1. 
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Figure 5. Foci Arrangements and Coordinate Systems for the GBT, Sheet 2. 
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Figure 6. Foci Arrangements and Coordinate Systems for the GBT, Sheet 3. 
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Figure 7. Foci Arrangements and Coordinate Systems for the GBT, Sheet 4. 
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Figure 8. Foci Arrangements and Coordinate Systems for the GBT, Sheet 5. 
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