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Abstract

While the angular position of the main beam of the GBT is close-loop controlled using encoders on the
mount axes, the actual position of the beam in topocentric coordinates is subject to a variety of perturbing
influences, both quasi-random and deterministic. This document is a consolidation of a variety of topics
associated with the construction of a static pointing model for the GBT that includes geometrical,
gravitational, thermal, track, wind, inertial, and non-ideal material effects. There will be a companion
document describing techniques for estimating the model parameters from meteorological, astronomical,
and metrological data.

History

53.0 KTC 12/6/2006. Original draft.
53.1 KTC 6/3/2008. Various additions and corrections.
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1 Introduction

The goal for pointing accuracy and stability of the GBT is, for the highest frequency operation currently
envisioned, in the 1”-2” range. Our objective is to provide this kind of pointing performance over as large
a fraction of the environmental conditions as possible, e.g., day-night and with wind. Another objective is
to reduce the need for observation dedicated to maintaining the pointing model to the barest minimum.

This document develops a pointing model from basic assumptions, and for the Gregorian configuration
only since the pointing requirements for the low frequency receivers at prime focus are much less
stringent and easily met. The discussion is somewhat pedantic since the notation and methods will be
used in other documents. The model is a static model only: Effects such as structural vibration and
dynamical servo errors are not considered. We do not consider the effect that aberration may have on
pointing, e.g. the bias caused by coma.

There will be a companion document that addresses the estimation of pointing model coefficients from
astronomical observations and PTCS instruments, e.g., inclinometers, and assessment of pointing
performance in comparison with the requirements®.

2 Preliminaries

Constructing a model of the GBT pointing requires work in a variety of coordinate systems associated
with the alt-az mount, various optical and mechanical elements, and distortions of the structure itself.

2.1 Cartesian coordinates and transformations
The first quantities of interest are vectors (free vectors) that have magnitude and direction such as forces.

Let F'be a vector in the i Cartesian coordinate frame. Then
ri=Rr! (1)

where R} is a rotation matrix that performs the alias transformation of the vector from the j" coordinate
basis to the i" basis. An alias rotation (also called passive) rotates the coordinates rather than rotating the
vector in a coordinate system (called an alibi or active rotation). All rotations in this document are alias
unless otherwise noted. The components of r will be denoted as (xl, Xy, X3) where X, corresponds to the

usual X, X, to the usual y, etc., so that F = X, X, + X, X, + X;X,; Where the circumflex () indicates a unit
vector. When the coordinate systems are orthogonal, the rotation matrix is a real and orthogonal so

RV =R =(RI) (2)

! ]

where T indicates the transpose. Alibi rotations are just the inverse of the corresponding alias rotation.

Some care must be exercised to distinguish true (or polar) vectors or scalars, such as force, from pseudo-
vectors or pseusdo scalars, such as angular momentum. Pseudo-vectors will undergo a sign change under
an improper rotation, i.e., when the determinate of the real orthogonal rotation matrix is -1. Note the
simple mnemonic of the subscript being the “from” coordinate system and the superscript being the “to”
coordinate system (for rotation matrices) or the basis (coordinate system) for the vector. Hence a subscript
will “cancel” the superscript to its right as in

r* =R'RIT". (3)
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Position (or bound) vectors transform differently as the translations of coordinate systems must be
accounted for. Thus a bound vector will transform as

F = RIFI 40 )

where oij is the position vector of the origin of the j coordinate system in i coordinates. The distinction
between bound and free vectors will be made by the context.

2.2 Curvilinear coordinates

There are cases where a more natural or convenient coordinate system is not the usual Cartesian one. For
example, the deviations of the primary mirror from an ideal paraboloid of revolution are more
conveniently expressed in an u-v-w coordinate system where the unit vectors U, V, W form a right-handed

orthogonal system with the W vector normal to the parabolic surface at the location (u,v), and both u and

v are positions on level curves such as the hoop and spoke description of the surface. More on this topic is
not within the scope of this document, but will become germane in later discussions concerning
distortions of optical elements.

2.3 Small angle perturbations, similarity, and linearity

Once the basic geometrical components of the pointing model have been formulated we are generally left
with very small perturbations to pointing. These small angle rotations have a desirable property that the
rotation matrices commute to the 1% order (and thus the order of rotations is not important as opposed to
say, the Euler angle convention for large rotations), and can be represented as

Sij:|+gij (5)

where the matrix gij is skew-symmetric and we will use S to distinguish this as a small angle rotation. For
a positive right hand rule for rotation and alias transformation,

0 a, -—a, (6)
e=l-a; O a,
a, -a 0

where ¢ is rotation around the 1-axis (the usual x axis), etc.

A rotation matrix is a linear operator with an associated basis (coordinate system). The basis of the
rotation can be changed via similarity transformation in order to allow us to change the order of the
application of a chain of rotations. For example, given the chain

r* =RRIT. (7)
We can change the rotation order by transforming the first rotation. Let

ok _pipkpi 8

Ry =R;R;R; (8)

Then

r“ =R/R/F' =R/RIRR/F' =R/RT". (9)
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As desired. This will be useful in order to place all small angle rotations in a particular frame, such as the
reflector coordinate frame where the rotations are naturally aligned with the elevation and cross-elevation
directions (the spherical unit vectors in the ground based frame). For example, the chain

bt = RISIRIS!p° = SISIRIRIP® = S/SIRIR® (10)
where

SZ =R}SZR? (11)
S¢ = R;R{S{RIRY
Expanding the product S_54 8_32 demonstrates that small angle errors sum to the 1% order

SSSZ=(1+&)(1 +&2)=1+&; +& +higher order terms (12)
and thus we can aggregate the perturbations simply. The most important side effect is that we can now
treat each small pointing perturbation separately, i.e., without regard to the frame that it occurs in, as long
as the perturbation is similarity transformed appropriately at the end, and simply sum the collection of
perturbation matrices.

2.4 Influence coefficients and plate scales
Under very general conditions (linearity of the structure) there is a linear relationship between torques or
forces applied at some node in the structure to the deflections and rotations of some other node (perhaps

the same node) in the structure. Using qand Q to denote vectors of generalized deflections and forces
respectively,

q4=CQ ()

where C is referred to as the stiffness matrix. Mixed terms may occur, e.g., a rotation at node i due to
force at node j. A reciprocity theorem requires that the C matrix is symmetric, i.e., if a force Q; at node i
produces a deflection g; at node j, then the same force applied at node j will produce the same deflection
at node i. Another consequence of structure linearity is that the effects of the generalized forces or
deflections superpose, so we can sum individual effects to determine the net effect of several forces or
deflections.

We assume a similar relationship between the rigid body generalized deflections of an optical element,
e.g., the subreflector, and the pointing perturbation resulting. These are the plate scales? of the element,
e.g., pointing error on the sky is a linear function of the translation of the subreflector with respect to its
design position. To be more precise, the rigid body deflections are the change in pose and position of e.g.
minimum-squared-error (MSE) fit of the ideal element shape with respect to the actual shape of the
element’. This assumption is true only for small deflections, where small is determined by the optical
properties of the system- As a practical matter deflections that result in pointing changes on the order of a
1000 arc-seconds or less are acceptably small. Small deflections may also have considerable effect on net
wavefront errors and beam properties.

2.5 The design coordinate systems
GBT Drawing C35102 Rev C details the design coordinate systems and element orientations. See Figure
4 though Figure 8. The following table is a recapitulation of the drawing, converted to Sl units and with

“ The metric for best fit surface that has the same position for maximum sensitivity as the actual surface may be
other than the MSE.
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the enumeration of frames that we will subsequently use. Note that the design coordinates are with respect

to idealized (and not necessarily measurable with requisite accuracy) rotations.

Enumeration | C35102 Rotation Translation Comments
Name
1 Base X, = East
X, = North
X, = LocalUp
Vertical
reference is track
2 Alidade 1 0 O0fC(x-6) -S(z-6) 0 0.000 Ry =1
R;,=|0 -1 0/S(z-6) C(z-6) 0| o0,=/0.000 6 = azimuth
0 0 1 0 0 1 0.000
LHR + from
North
3 Elevation 1 0 0 0.000 ‘RSZ‘ =1
R; =10 S(4) C(9) 0; =| 0.000 ¢ = elevation
0 —C(¢) S(¢) 48.260
RHR + from
horizon
4 Reflector 1 0 0 [ 0.000 ‘Rf‘ =1
RE=/0 1 0 0} =|-62.983
001 | 5.000
5 Prime T 0 0 1 [ 0.000 ‘Rs‘“ =1
Focus 4 4
R, = C(0.794) —-S(0.794) O o. =| 0.000
_S(0.794) C((0.794) O _60.000
6 Subreflecto T 0 0 1 [ 0.000 ‘Rg‘ =1
r
Rg =|C(0.641) -S(0.641) O Og =|—-4.292
_S(0.64l) C(.641) O _63.802

Table 1. Design coordinate frames in meters and radians.

3 The pointing model

We will now compose the pointing model by first constructing the geometric (ideal) relationship between
the base coordinates and the principle ray of the optical system and then consider a sequence of small
angle effects. The result will be a parametric model with the estimation of parameters addressed later.
Note that azimuth and elevation angles are strictly the error-free encoder angles- Which might not be
easily converted to astronomical spherical angles due to the assembly of pointing perturbations. In fact,
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the purpose of the pointing model is to provide an invertible relationship between the two. There may be
cases where various parameters of the pointing model are not linearly independent, which could present
problems in the estimation of these parameters. If so, regularization of the model will need to be
addressed to achieve, as much as possible, the uniqueness of a model solution.

3.1 Theideal pointing model
The optic is aligned so that the principle ray in the reflector coordinate frame is just )25‘ = p*where

p* denotes the principle ray in the reflector coordinates. Thus the principle ray in the base coordinate
frame is

C(#)S(0) )
p" = RRIRIP* =| C(A)C(O) |.
S(g)

the base coordinate spherical angles of the principle ray are (&, @) as expected

¢ = ArcSin(p?) (15)
Pry-
0 = ArcTan(—-

2

and the spherical unit vectors are

5= p P =% -
4 Cos(60)
AL S P 6" =%,
de| do 0
P e I I
p :W w: —-Sin(g)Cos(0) | ¢" =-X,
Cos(¢)

where @ and ¢ are the cross-elevation and elevation directions respectively.

3.2 Geometrical errors in the ideal model

Geometrical errors are just the errors due to differences between the design frames (actually, the positions
and pose of e.g., the elevation axle) and the telescope as constructed. For convenience we will formulate
the errors in the cross-elevation and elevation directions, i.e., the pointing error will be expressed as

AD4:_64+64:A99‘4_A¢¢?4 (17)
where 54 is the measured pointing direction and p* is the predicted (ideal) pointing direction. The effect

of optic rotations is degenerate with elevation axle rotations (see below) but kept separate in anticipation
of direct measurements of elevation axle pose using inclinometers.



PTCS/PN/53.1 9
Since processed’ astronomical observations (“Jack Scans™) measure pointing errors “on the sky”, or
A@*and Ag*, we note that for some small angle perturbation S the on the sky error will be the elements
of the similarity transformed &

AO* (18)
Ap* = (RERSSR? — RERJRY Jp! = RERSAR? P =| - Ag*
0o |
= (RIRSRIRIRIRIR/ ' = 2"
For convenience we enumerate several £p* given Table 1:
,Cos(¢) — Sin(#){a,Cos(0) + o, Sin(0) } (19)
£,p* = (RIRIRZRIRZR! )p* = ,C0s(6) — a,Sin(6)
0
a,Cos(9) — a,Sin(g)
&,p* = (RIRZRIR] Jp* = o
0
~a,
&b =(RIR)p* =| @ |=2,p°
0

Note that terms that are second order small occur, e.g., a,Cos(¢#)car,Cos(@) , which are
effectively zero and will be removed when the various contributions are summed.

3.2.1 Azimuth encoder offset and track tilt

An offset of the azimuth encoder with respect to true north is a rotation around )“(idirection, and

track tilts are rotations around X; and X;, so

a,C(4) - S(P)1,C(0) + 2,5 (6) (20)
Ap* =gp" = a,C(0) - a,S(6)
0

Note that the tilt of the track is with respect to the topocentric coordinate system used by the
astronomical pointing calculations, not with respect to local gravity. In fact, measurements of
track tilt using inclinometers combined with astronomical inferences results in a measurement of
the deflection of local gravity with respect to topocentric coordinates. The result is in agreement
with model predictions of local gravity deflection, on the order of arcseconds. This will be
discussed more fully elsewhere.

"It might be easier (and less prone to error) to use un-processed, direct encoder differences. In this case the model
would be formulated with Ar)l as the pointing error.
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3.2.2

3.2.3

3.24

Ap*

Elevation encoder offset and elevation axle skew

Similarly, encoder offset is a rotation around )212 and the axle skew is rotations around >?22 and >?§
S0

a,Cos(g) — a,Sin(g) (21)
Ap* = o,
0

Optical alignment

While plate scales and misalignment of the optical elements could be separately calculated for a
net pointing error of the optic with respect to the reflector frame, the result is just a set of linear
constraints on the combinations of position and pose errors of the elements. There are 15 degrees
of freedom®, but only two observables, the cross-elevation and elevation pointing residuals. The
net pointing error due to alignment error is just

_a, (22)

The pointing model

The composite pointing error is

2,C(#) - S(#)12,,.C(0) + @,,5(O)]] [@5.C08(9) - @, Sin(#)] [~y (23)
= a1,aC(9) - az’aS(H) + (277 +| a,
0 0 0

Where the subscripts of a, e, and o denote contributions from the azimuth, elevation, and optic
alignment errors. Collecting terms and removing second order small contributions, we get

—aty, — 0, Sin($)+ a3, Cos(¢) + 3 ,C () — ., S($)S(O) -2, S(HCO) | [ a0 ] (29
e+ 0, — az,as(e) + al,ac(e) =|—A¢
0 0

There are seven independent rotations (the )A<§1 rotation is around the pointing direction and hence

does not cause a pointing error, but may change polarization), but only five independent
coefficients of the two-dimensional trigonometric series- Coefficients for track tilt are present in
both the elevation and cross-elevation errors. Note that while the basis functions for the series are

* The three rotational degrees of freedom of a receiver feed with respect to the phase center might effect efficiency
(and perhaps polarization), but pointing should be unchanged.
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not orthogonal on @ €[0,2x), ¢ €0, %] , they are linearly independent. The correspondence of

these terms to the other two pointing model representations is:

Physical Error Basis Coefficient GBT TPOINT® | Condon Series

Meaning Direction Coefficient Coefficient’

Horizontal Cross- 1 —-a,, CA doo

Collimation elevation ’

El Axle Cross- S(9) -a,, NPAE bo1

Collimation elevation '

Az Zero Cross- C(g) Ay, + 0y, IA doa
elevation ' '

East Tilt Cross- S(#)C(0) a,. AW by
elevation ’

North Tilt Cross- S(9)S(0) a., AN s
elevation '

El Zero Elevation 1 a,, —a, -1E doo

East Tilt Elevation S(6) a,, -AW Ci0

North Tilt Elevation C(9) a., AN dio

Table 2. Correspondence of pointing model coefficients for geometrical errors.

3.3 Gravitational distortions
The gravity vector, nominally down in the base coordinates, appears to rotate in the tipping structure
coordinates as telescope elevation changes. This, and effects of possible imbalance in the tipping structure
requiring torques around the elevation axle, cause varying forces and moments in the structure as
elevation angle changes. For this portion of the model we consider the optical elements to be rigid and
attached to the massless structure with flexible trusses, i.e., the shape of an element does not change, but
its position and orientation within the structure might. Distortion of the elements themselves will cause

wavefront errors and potentially pointing errors.

The effects are decomposed into contributions from the optics (tipping structure), the change in pose of
the elevation axle, and rotation of the elevation encoder.

3.3.1 Translation and rotation of optical elements

The gravity vector in elevation coordinates, including the effect of elevation axle misalignment, is
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3.3.2

0 F, {;,.Cos +a298|n(¢)} (25)
F2(¢)=S.RIRZF =S,R:RY| 0 |=| F,{Cos(¢)-a,,Sin(p)}
-F, g{ leCos ¢)+ Sin(gp )}

F, {2:.C0s(¢)+ @, Sin(¢) - s, |
AR (¢)=F}(p)-F;(0)=| F,{Cos(¢)-a,Sin(g)-1
— F, {o,.Cos(¢) + Sin(¢) - o, |

Thus the deflections and rotations associated with an element i will be

_3
a;

~ R ArS (26)
Ag’ = CAF] =Cm,GAF], Ag} =| !

And the change in pointing will be

3 t.. . B (27)
AGT ||t C.AF;
- A¢3 Ce e L

where the coefficients t;; are the plate scales associated with the translation and rotation of the
element. For the actual values of the small angle rotations seen in practice, the additional terms

(e.9., a5,) in Alfga(gb) are small enough to drop. However, even though the gravity vector is
then always in the vertical plane (in the reflector coordinates), this does not mean that there will
be no cross-elevation errors- Rather, this depends upon the nature of stiffness associated with the

element mounting. Anticipating that we will estimate this effect using astronomical observations,
we can combine the T and C matrices and various constants. For any one element, after removing

the constant term in Alfg3 we have

AG® Bui - - 0 (29)
“AF = .| Cos(g) |=aps = ap;.
0 . . :BSB,i _Sin(¢)

Collecting all of the optical elements results in

AG* P.Cos(#)~ B,sSin(¢) (29)
| <[ aF) <] pucost)- pasinte)|
0 0

Deflection of the alidade
The moment around the elevation axle bearings can change as a function of elevation angle due to
mass imbalance of the tipping structure. Suppose the position of the center of gravity of the

tipping structure is T, tfg and the mass m;. Then the moment applied to the alidade is
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0 (30)
My = Foy X Fy = MGFE x F2 2 m,GF2 x| Cos(g)
- Sin(g)
O e~ Pateg 0
=mG|-r), O M | COS(4)
Geg Mg 0 | -Sin(p)

Where x is the usual vector cross product and we have again approximated the gravity vector in
the vertical plane. The cross product can be formulated as a linear operation using a skew-
symmetric matrix of the moment arm vector. The reaction of the alidade and elevation drive
provides for static equilibrium, i.e. (see Figure 3) the forces and moments applied to the tipping
structure must be zero

My, + Mg+ Mg+
Fo+Fs+Fo+

1020:rtch g TTe X Fg +
F,=0

)
}

(31)

Zl
[e2]

X
[{e]

+
i
o

X
5

Where the elevation drive mechanism produces force tangent to the bull gear (always in the
>”(§direction). The force at the bull gear is determined by the moment relationships

32
. . (32)
_ m.G .
Bl | Fly || o 2 Sin) + 2, Cos(o)}
3,3 3,6
0

Where the notation r3 ¢ Indicates the 3 component (X3 or z direction) of the vector 1,°. The
complete set of constraints requires that

{_ F1,29 = F1,210} (33)
F229 = I:22,10
F.2 =_FLZ'6
2,9 2
I (r, —r3)=-F2
310 =75 et Vg 19/ T T30
Feflo + F329 = F32tg

Thus the axial forces (parallel to the elevation axle) remain indeterminate and must be determined
with an alternative. Without proof we assert that the functional form must be

F.5 =asin(¢)+bCos(¢). (34)

Note that the “y” inclinometer data as a function of elevation® at least provides some plausibility
that the axial compression/tension is a real effect, and that “potato chip” deformations of the
primary may result in turn causing astigmatism in the optical system.
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The result of the reactions is to deflect the elevation bearing castings and change the pose of the
elevation axle. Let AT, and AT, be the deflections due to AF, (= F,(#)— F,(0)) and AF,, .

Noting that the alidade towers have different stiffness (see PTCS Project Note 46) but assuming
that to the first order the distance between the elevation bearing centers is constant, the resulting
rotation of the axle is

0 AIr22,9 - A"22,10 - (Arl,zg - Arl,zlo) (35)
- (Arzz,g - Ar22,10) 0 0
Arfy — Arl, 0 0

Let Cij be the stiffness of node i with respect to a force applied to node j. Then by superposition,

combining various coefficients, and using the functional form of AF;, AF, and AF,,

AT, = C;AF; + Cg AR, + Ci°AF,; = &, Cos(¢)+ Db, Sin(g) (36)
AR, = C{LAF +Ci AR, +CioAF,, = &, Cos(¢)+ b, Sin(g)

By combining stiffness matrices and coefficients we arrive at

0 a, Cos(¢)+b, Sin(¢) —{a, Cos(¢)+b, Sin(¢)} (37)
& =|—{a, Cos(p)+b, Sin(¢)} 0 0
a, Cos(¢)+b, Sin(p) 0 0

And finally determine the change in pointing using ( 19)

COS(¢){a3 COS(¢)+ b, Sin(¢)}_ Sin(¢){az COS(¢)+ b, Sin(¢)} (38)
gpt = 0
0
B, + B,C0s(24) + B,Sin(2¢)
= 0
0

3.3.3 Rotation of the elevation encoder
Similarly the elevation axle encoder, attached to the manlift side elevation bearing casting, could
experience a rotation due to elevation change and tipping structure mass imbalance. The rotation
around the )212 direction will be a linear function of the forces applied to the alidade, and so we
can directly write
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0 0 0 (39)
£=|0 0 B, Cos(p)+ 3, Sin(g)
0 {8, Cos(g)+ A, Sin(g)} 0
0
£p* =| f Cos(¢)+ B, Sin(¢)
0
3.3.4 Combined geometric and gravity pointing model
Combining the pointing changes due to the effect of gravity yields
. . 40
AO"| [ PraoCOS($)~ PraoSINB)+ By + B,2C0S(26)+ B, ,Sin(29) .
Af |= ~(Brc + Po)COS(#) = (B = Brs)Sin(9)
0 0
Physical Error Basis Coefficient Current Model | Condon Series
Meaning Direction TPOINT Coefficient
Coefficient
Horizontal Cross- 1 —a,, + P, CA doo
Collimation elevation ' '
El Axle Cross- S(9) —t,, — P, NPAE Po.1
Collimation elevation ' ’
Az Zero Cross- C(o) QAyo + 0y + Py | 1A dos
elevation ' ' '
East Tilt Cross- S(4)C(0) -a,, AW D11
elevation '
North Tilt Cross- S(4)S(6) -ay, AN s
elevation ’
Asymmetric Cross- S(2¢) B bo,2
Alidade Twist | elevation ’
(Imbalance)
Symmetric Cross- C(2¢) By do,2
Alidade Twist | elevation '
(Imbalance)
El Zero Elevation 1 -, -, -1IE doo
East Tilt Elevation S(0) . -AW C10
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North Tilt Elevation C(9) -a,, AN dio
Asymmetric Elevation S(¢#) = Pae t Paso HzSz Dos

Gravity ' ’

Symmetric Elevation C(o) —PBie =B HzCZz do1

Gravity ’ '

Table 3. Geometry and gravity pointing model.

3.3.5 Focus tracking and active surface servomechanisms

Both focus tracking and active surface adjustments to compensate for gravitational distortions
have the potential to introduce pointing errors. The servo mechanisms that implement the
subreflector motions and primary surface adjustments may fail to achieve the commanded
positions due to encoder or position sensor errors and servo control loop error, i.e., failing to
drive the difference between commanded and sensed position to zero. For example, the active

surface LVDT position sensors are known to have significant non-linearity, and the servo control
is a “bang-bang” loop®. The linearity of the Stewart Platform link length sensors also anecdotally
are nonlinear, and there exists a possibility that the kinematic model of link length to subreflector
position and pose is in error due to calibration of the link endpoints. There is also a possibility
that the position commands, e.g., intended to adjust focus without causing pointing variations, are
incorrectly constructed.

The natures of the error functional forms are largely unknown. Hysteretic errors would cause
non-linear and memoried errors (e.g., dependent upon the previous motion’s direction).
Kinematic errors would be smooth but with somewhat complicated error dependence upon
current position (in the case of the Stewart Platform). Command algorithm errors could be either

smooth or discontinuous.

Given current pointing performance it is possible to bound the magnitude of the resulting
pointing errors, which are modestly small, and comparison of pointing errors from scans that run
in different directions or start from different positions bound the hysteretic effects to similarly
small pointing errors. Nonetheless, these potential errors should be remembered when examining
the residual pointing error after application of a pointing model. It is likely that they will be one
of the dominant limits to pointing accuracy.

3.4 Track irregularity

The azimuth track tilt terms included in Table 2 are the global tilts of the best fit plane (BFP) to the entire
circumference of the track. Track elevation, however, potentially varies over the circumference due to
fabrication, foundation subsidence, wear effects, and thermal effects. These local variations influence
pointing by causing a local tilt of the BFP (the BFP with respect to the actual contact points) and by
introducing forces and moments at the alidade corner weldments- The interface is overconstrained with
16 contact points (the truck wheels). The suspension of each truck, via spherical truck bearings and flex
plates, removes to a great extent two of the three orthogonal forces applied by the track to each corner
weldment and two of the three moments (torques). Hence there are a total of eight degrees of freedom for
the corners representing one force (nominally in the vertical direction) and one torque (nominally around
the radial from the pintle bearing) for each corner, and two additional torques and three forces associated
with the reaction of the pintle bearing although the forces in the horizontal plane are nominally zero (See
Figure 3). We assume that all wheels are in contact with the track at all times.

The deviation of the track centerline from a plane introduces a pointing shift due to a local tilt (the local
best fit plane) and due to distortions of the alidade caused by the forces and moments introduced at the
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corner weldments and potentially the pintle bearing. In the absence of detailed information on the various
stiffnesses and the actual track profile there is not much to be gained in constructing a detailed description
of the kinematics other than to note that there are two symmetries that can be used: Pure tilt must have the
form

0 0 -4,(0) (4D
‘9t(‘9): 0 0 A’Lt(e) :_gt(9+”)
/12,t (9) - A’l,t (9) 0
0 0 -2,0)
gt[mﬁj =l 0 0 4,0
/3'11 (0) - /12,t (9) 0
and deformation must have a 180 degree asymmetry
£4(0)=—-¢,(0+ ) (42)

as long as the scale length of track elevation error is large compared to the possible deviation of truck
positions from the design locations.

The orthogonal inclinometer sets mounted on the elevation bearings (see PTCS PN 44) are used to
measure the rotations of the bearings as a function of azimuth angle, and then detrended for temperature
variations, wind effects, the global tilt of the track, and residual structural vibrations. Note that a side
effect of the detrending process is an explicit measurement of the AN and AW tilt terms

(- A, and — a4 ).

3.4.1 Local tilt®

Serendipitously, the inclinometers indicate that the alidade undergoes a tilt, rather than a
deformation, around the )?22direction (normal to the plane including the elevation axle and pintle).

Let AE%(0), AEZ(0), AEL,(0) and AEL,,(6) be the detrended inclinometer measurements
from GBT Project TPTCSKTC041129 for rotation around the X” and X directions at locations

I, and 1, (see Figure 3). Afﬁg and Afim agree to a remarkable extent. They approximately

exhibit the appropriate 180° asymmetry, as shown in Figure 1. The source of the differences in
the asymmetry is not known.

% The measurements in this section have been substantially improved, with much greater resolution on the track and
various corrections. See reference 14.
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3.4.2

Track Induced Alidade Tilt
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Figure 1. Local tilt.

Since the local tilt has a 90 degree symmetry, we have A, (6)= —%[A§§9(0)+ AELL, (6?)] and

A (0) = /12{0 + Ej where the signs have been adjusted for the polarities of the inclinometer
measurements and the expected value (average) of the two inclinometer angles.

Alidade tilt rather than distortion in this direction is probably due to a much higher stiffness, in
turn probably due to the elevation axle itself.

Alidade twist

Measurement of the elevation bearing casting rotations in the orthogonal direction, around
the )212 axis, show that the castings rotate in opposite directions under the influence of track
irregularities (Figure 2).
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Alidade Twist
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Figure 2. Alidade Twist

Part of the rotation is due to deformation, but part is also due to the local tilt of the alidade. Thus

A& (0)=A55(0)+ 4, (0) (43)

Afflo (‘9): A6};1,210 ('9) + ﬂ’l,t (9)

Where Aé?g (6) and A;i?m (6) are the rotations due to distortion of the alidade. The deflections

Afgz and Aflg are linear functions of the respective rotations. The magnitude of the resulting
rotation is on the order of arcseconds, so we can approximate the stiffness of the alidade towers as
equal without significant error. Thus for AE?(6)= A& (0)— A&, (6) we have

0 /13,d - /12,d .
€4 (9): — Ayq 0 A A&! (‘9)
/lz,d - ﬂ“l,d 0
For this specific case the difference of inclinometers can be approximated as
(45)

AEX()=1.6Sin(2.06-1.5)+5(0)

where the standard deviation of 5(49) is 0”.7. This suggests that the twist of the alidade is
dominated by large scale error in track elevation rather than moments introduced at the corner
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weldments, and could possibly be associated with the circumferential variation of foundation
stiffness, e.g. the four grade beam contributions.

3.4.3 Elevation encoder rotation

The pointing error due to elevation encoder rotation in the alidade frame will be

0 0 O (46)
£ (0)=-0 0 1]aZ5(0).
0 -1 0

Note that the mass imbalance rotation (a function of elevation angle, in 3.3.3) is independent of
the track induced rotation (a function of azimuth angle).

3.4.4 Combined geometric, gravity, and track pointing model

The complete contribution of track irregularity is just the sum of the local tilt, alidade distortion,
and elevation encoder rotation errors. The alidade distortion coefficients must be estimated by
making measurements with inclinometers concurrently with astronomical pointing runs.

Ay = Ay + Ao g AEL(O)+ Ay = gy + Ay g AE(0)+ 4, (A (0)- 2y,) (47)
= L AEL(0)+ AEL(0)

Ay = Ay + Ay e AER(O)

/13 = /13,d A§12 (9)

45(0)Cos(¢)— 2,(6)sin(g) (49
Ap* = 4(0)
0
Table 4 lists the contributors for the combined geometry, gravity, and track model. Alpha

coefficients correspond to geometry terms, beta coefficients correspond to gravity terms, and
lambda coefficients correspond to track terms.
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Physical Error Basis Coefficient GBT Condon
Meaning Direction TPOINT Series
Coefficient Coefficient

Horizontal Cross- 1 —a,, + P, CA doo

Collimation elevation ' '

El Axle Cross- S(¢) — 0y, — Py — Ay (9) NPAE Do

Collimation elevation ' ’

Az Zero Cross- C(g) Oy + sy + P + A (49) IA dos
elevation ’ ’ ’

East Tilt Cross- S@ACO) | -«a,, AW D11
elevation '

North Tilt Cross- S(9)S(0) —a,, AN a1
elevation ’

Asymmetric | Cross- S (2¢) i [P

Alidade Twist | elevation ’

(Imbalance)

Symmetric Cross- C(2¢) B do2

Alidade Twist | elevation '

(Imbalance)

El Zero Elevation |1 —a, —a,, — 2,1(9) -IE doo

East Tilt Elevation S(0) a,, -AW C10

North Tilt Elevation C(o) -, AN dio

Asymmetric | Elevation | S(¢) —Boe + Poso HzSZ bo.x

Gravity ’ '

Symmetric Elevation | C(¢) = Bie =P HzCz doz

Gravity ' ’

Table 4. Geometry, gravity, and track pointing model.

3.5 Thermal effects

The temperature and temperature gradients of the structure can effect pointing. Gradients cause
differential expansions that in turn cause additional stresses in the structure, and there is a small change in
the elastic modulus of structural materials as a function of temperature.

The latter effect is almost always ignored as it is very small over normal environmental temperature
changes, but when the desired pointing accuracy is very small compared to the pointing-equivalent
motion of a component (as it is for the GBT feedarm), relatively small changes in elastic modulus can be
significant. The current pointing model has a maximum elevation pointing correction change due to
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gravity of about 350” (from zenith to horizon) which is consistent with the expected displacements and
the plate scale of feed arm motion. The modulus of carbon steel exhibits a -0.5% / C temperature
dependence’.

3.5.1 Differential expansion

The model and rationale for correction of gradient effects is described in a previous PTCS Project
Note®. This model could be improved by more temperature sensors and or better algorithms, but
the performance to date is adequate for periods where GBT temperatures are not changing
rapidly. Particular improvement was obtained in stabilizing focus, somewhat less improvement in
elevation pointing, and little improvement in cross-elevation.

3.5.2 Modulus of elasticity

The temperature dependence of the modulus is probably only significant in
the /3,, , and f3,; , terms in Table 3 and Table 4. The magnitude of the effect can be approximated

by noting that a 1° C bulk feed arm temperature change could cause 1”.75 pointing error from
zenith to horizon. This effect is not modeled in PFM 5C.

3.6 Wind effects
Some attempts have been made to approximate the quasi-static effect of wind on pointing. Hypothesize

that the change in pointing is proportional to the kinetic head E'DVZ with a different constant of

proportionality in elevation and cross-elevation, and that the constants are independent of elevation. Then
decompose the incident wind velocity into azimuth relative orthogonal components so that

AO] [K.q O {vsin(6-8,)} (49)

Ag 0 kg {vecos(0-6,) |
The off-diagonal terms could be made non-zero (reflecting a belief that the structure reacts in an
asymmetric way). The most obvious defect in this model is that it does not take into account the effect of
tipping structure pose. Pose effects could be predicted by CFD (computational fluid dynamics) but the
structure is complicated enough that it would infeasible in practice. Alternatively the effect could be
estimated using a large dataset including a range of wind speeds for a set of elevation angles, but the
existing data are not dense enough in this part of the parameter space for this to yield useful results. Given

that the number of parameters to estimate is already quite large (and fitting is ill-conditioned, see below),
this model is not included in the current pointing model (PFM 5C).

Dynamical effects are even more problematic: Von-Karman buffeting and pumping of the structure’s
vibrational modes are conceivably significant, but very hard to model. These effects are also not included
in PFM 5C. Instead, model fits utilize data collected with wind speed below some threshold to limit the
confounding effects.

3.7 Inertial effects

When the structure is moving at constant angular rates centrifugal and Coriolis forces are present. The
effects can be bounded by comparison with the gravitational acceleration. Assuming a maximum tracking
rate of 250 micro-rad/sec and a maximum 100 m moment arm, the centrifugal forces will be less than 0.64
x 10 G, or equivalently a rotation of the apparent gravitational vector of about 0.64 micro-rad. Given
that the most sensitive component will be the feed arm and that the pointing effect of an elevation change
of 90° is about 350 in gravitational deflection, the effect of centrifugal accelerations will be on the order
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of 0.2” x 107, Coriolis forces will be of the same order given feed arm velocity (in the rotating frame, and
due to vibration) of less than 5 mm/sec. Thus neither will be of any consequence.

Tangential acceleration due to dithering of azimuth and elevation input torques is significant but is
mediated through the response of the structure as a system of coupled simple harmonic oscillators. This is
the subject of current work on modeling and predicting structure vibrational responses and is not
appropriately included in a static pointing model. Half-power track experiments® show that vibrational
pointing errors can be on the order of 5”. We assume that these contributions are incoherent from Jack
Scan to Jack Scan, and thus are suppressed when pointing data are fit by the pointing model.

3.8 Encoder errors

The BEI electro-optical azimuth and elevation encoders exhibit four types of errors: Less than perfect
alignment of the encoder shaft to the telescope axis results in a periodic error, cyclic (fine cycle) encoder
errors due to vernier effects, nonlinearities associated with the encoder wheel, and backshaft windup due
to encoder friction. A calibration report for one of the installed encoders indicates that the net RMS error
(less alignment and windup) is 0”.63.

3.8.1 Windup

Friction in the encoder assembly results in torque applied to the axis backshaft, in turn causing a
windup in the backshaft and a resulting hysteretic angle measurement error. Design studies™
predict an elevation error of 0”.41 and an azimuth error of 0”.69 for azimuth. If the effect is
modeled as a velocity-independent (i.e., non-viscous) term, an indicator of axis rate can be used

v %

where I(é): 1 if &> 0and —1 otherwise, similarly for ¢. Model PFM5C estimates the
coefficients to be -0”.54 for azimuth and -0”.99 for elevation.

Note that in the control system implementation this correction is multiplied by a hyperbolic
tangent function of a scaled axis angular rate in order to prevent limit-cycle behavior of
corrections when axis angular rates are small*’.

3.8.2 Alignment

The coupling between the axis backshaft and encoder can be modeled as a Hooke joint. Pointing
error due to misalignment is then

cos(y, )cos(¢) oY
e
A cos(y,

where y, and y, are the azimuth and elevation encoder misalignments, respectively. For small
misaligments this can be approximated by
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McH il

Ag 0 4 cos(2¢)

Note that the error is periodic in twice the axis angle which is distinct, with the exception of the
tipping structure imbalance terms, from all other terms in the model. The current pointing model
does not attempt to estimate or correct for this error. Design studies™ predicted the error to be
17.41.

el

3.8.3 Cyclic error

Due to the design of the encoders, there is a fine-cycle error (periodic error over small angular
excursions). Calibration data from one of the installed encoders indicates a fine cycle error of
approximately 1”. The pointing model does not attempt to correct this error, nor is it clear that it
is feasible to do so. The error can be considered as a zero-mean random contribution.

3.8.4 Nonlinearity

The same calibration indicates a maximum absolute difference (less cyclic error) of
approximately 2”.2. It may be possible to introduce encoder calibration tables into a pointing
model to correct for this error, but the current model does not do so.

4 Additional modeling topics

4.1 Refraction correction

The difference between the ideal (encoder) and measured (astronomical) beam direction in (17 ) is
determined at the aperture and hence atmospheric refraction effects must be removed!. The refraction
model*® has unknown error properties and these could be significant at very low elevations. This potential
problem is circumvented by not using very low elevation data in model fits.

4.2 Inverting the model

The pointing model predicts error given a commanded azimuth and elevation: The GBT control system
requires the opposite of this, i.e., the commanded azimuth and elevation that yield the desired pointing
direction. The pointing model is implemented in the GBT control system as formulated here, and then an
iterativel(lfixed-point) algorithm is used to determine the commanded angles that yield the desired
pointing ™.

4.3 Model parameter stability

Model parameters have physical interpretation, e.g., gravitational deflection of the feed arm, and it
desirable that the inferences be stable from model fit to model fit. For example, if the gravitational terms
show a drift over a long period or discontinuous change it would be an indication that the structure mass
to stiffness ratio is changing, and could indicate impending problems with structural stability.

The current pointing model, PFM 5C, is a weighted least squares fit of 32 parameters (including thermal
model terms) and used about 9900 astronomical measurements in the fitting process. The 2-norm
condition numbers for azimuth model, elevation model, and focus model were respectively 75, 226, and
285. The large condition numbers indicate substantial sensitivity of the model to perturbations in the data
such as noise in measurements and random effects from dataset to dataset, e.g. seasonal variations in the
tilt of the azimuth track. Consequently model terms are not stable, and potentially are overfit even though
the pointing measurement datasets are comparatively large.
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Several alternatives to weighted least squares fitting, e.g. Tikhonov regularization and/or random effects
modeling, could be used to improve the properties of the model fit. This will be discussed in the
companion methods document.

4.4 Error budgets

Some work has been done to characterize errors associated with data used for model fitting** in an effort
to establish bounds on expected performance as well as mechanization of the performance specification®.
Of particular note is the uncertainty in angular position of the astronomical sources that are used for
pointing data collection®.

5 Parameter estimation topics

Given a model which is a subset of the model terms discussed above, the next problem is estimation of
the model parameters. How does one go about estimating them, and what additional information, beyond
the parameters themselves, is desirable? How does one go about collecting the data to fit to? How should
these data be preprocessed before used for estimation? Detailed answers to these questions will be
included in a companion document. Here’s an overview.

The simplest approach to parameter estimation is to optimize the model with respect to a least-squares
criterion. This method has nice properties in that the model is linear and the fit can be accomplished via
the pseudo-inverse of the regressor matrix. If the errors in measurements are Gaussian, then the model fit
is simultaneously the maximum-likelihood estimate of parameters and the Bayes optimal estimate.
Supposing that we can estimate the parameters of an assumed Gaussian measurement error model (e.g.,
via a bootstrap), then one can use a weighted least squares estimate that has better outlier rejection
properties. If the errors cannot be estimated, a reweighted least squares fit can be used to reject outliers.

Parameter estimates should have confidence intervals associated with them, both for determining the
robustness of any one parameter value and so that some parameters can be used for diagnostics. For
example, if a sequence of model fits over time indicate a 95% confidence that the stiffness of the feed arm
has changed, the structure should be examined for incipient instability.

The condition number of the regressor matrices are large, indicating that some model terms are nearly
linearly dependent. Thus small perturbations in measured data can result in large changes in the values of
parameter estimates. This is undesirable for several reasons: Unstable parameter estimates disallow
determining e.g. problems with structural stability, the physical meaning of the parameters is
guestionable, and the model will not generalize well, i.e., the data are over-fit. A very useful approach
that mitigates the high condition number is to use some form of regularization to condition the estimates
with prior knowledge. For example, model thermal coefficients can be bounded. While the resulting
model fit will have e.g. higher squared error, it will perform better in practice.

Some model terms, e.g., the track model, almost certainly change substantially over time. When the data
used to fit the model are taken over an extended interval in time (as they have been), these changes can
result in poor fitting of other parameters. One approach to this problem is to employ random effects
modeling which attempts to capture the variation in the parameter over subsets of the complete dataset.

There is a tendency to think that more data are better, but this is not always the case. In the previous
paragraph we suggest that more data could cause deterioration of parameter accuracy unless special
methods are used. It is also the case that there is a cost (lost observing time) associated with pointing data
collection. Under a set of reasonable assumptions (error models) and given an objective for parameter
accuracy and model performance, one can infer the amount of data that will be required.

6 Summary and recommendations

While the angular position of the main beam of the GBT is close-loop controlled using encoders on the
mount axes, the actual position of the beam in topocentric coordinates is subject to a variety of perturbing
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influences, both quasi-random and deterministic. This document is a consolidation of a variety of topics
associated with the construction of a static pointing model for the GBT that includes geometrical,
gravitational, thermal, track, wind, inertial, and non-ideal material effects.

Most of the recommendations that can be made are more closely associated with the estimation of
parameters (See the section on parameter estimation topics). At this point in time the static (blind)
pointing model appears to be good enough for GBT operations at 90 GHz. Some improvement could be
made if it is possible to calibrate out encoder non-linearity. Dynamical errors during tracking due to GBT
vibration, excited by the servo-control system or wind, are subject of some ongoing studies. It is also
possible that more accurate thermal corrections could be had via a more dense sampling of structural
temperatures and/or a better thermal model of the GBT including radiative and conductive transport.
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Figure 3. Alidade free body diagram.
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Definition of Coordinate Systems:

1. The Base Coordinate System, (X, Y, Z).
The base coordinate system is fixed to the ground. Its origin is at the
intersection of the antenna azimuth axis and the top of the azimuth frack.
The positive directions of the axes are defined as follows:

X—axis towards East
Y—axis towards North
Z—axis points up

The azimuth angle (AZ) is measured from the Y—axis and is positive in the
clockwise direction looking from the positive Z side.
2. The Alidade Coordinate System, (Xa, Ya, Za).

The alidade coordinate system is attached to the alidade structure. It rotates

about the antenna azimuth axis. Its position is defined by the azimuth antenna angle.
The positive azimuth antenna angle (AZant) is measured from the negative Y axis in
the counter—clockwise direction. When AZant is zero, the orientations of the axes are:

Xa—axis towards West
Ya—axis towards South
Za—axis points up

Therefore, AZ = 180 degrees — AZant. The transformation between the two
coordinate systems, (1) and (2), are:
X Xa
Y | =Rq12|Ya
rd Za
where
i Rola cos(AZant) —sin(AZant) 0 C[RT a0z
Ri2=]0 -1 0 sin(AZant) cos(AZant) 0 7$3 M _Lw
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3.

The Elevation Coordinate System, (Xe, Ye, Ze).

The elevation coordinate system is attached to the elevation structure.

It rotates

with the elevation structure defined by the elevation and the azimuth antenna angles.

When the elevation antenna is 90°, ELant = 90°,

its axes are positioned

in the same directions as that of the alidade coordinate system.
The relation between the Elevation and Alidade coordinate systems is given as follows:

where

R23

|xn

Xe
Ya| =R23 |Ye| + T23
| Za Ze
K 0 0
= |0 sin(ELant)  cos(ELant
|0 —cos(ELant) sin(ELant
0
T2z = 0
+1900.000

1900.00 is the height in inches of the elevation axis about the top of the track.
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4. The Reflector Coordinate System, (Xr, Yr, Zr).

The reflector coordinate system is obtained by translations of the elevation
coordinate system. This is shown in the following equation:

Xe Xr
Ye = Yr +T34
Ze Zr
where
0
T34 = —2159.020
196.850

The offsets of the reflector paraboloid vertex from the elevation axis is given in inches by T34.
5. The Prime Focus Coordinate System, (Xp, Yp, Zp).

The origin of this coordinate system is at the focus of the dish paraboloid,

2362.205 inches from vertex of the paraboloid on the Zr—axis.

Yp—axis is 45.5° from Zr—axis on the ZrYr plane, and the Zp—axis is parallel

to the Xr—axis. The transformation is as follows:

Xr Xp

Yr =R45 Yp| +T45

Zr Zp

where
0 0 1
R45 = | cos(45.5") —sin(45.5%) 0
sin(45.5°%) cos(45.5°) 0
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Figure 7. Foci Arrangements and Coordinate Systems for the GBT, Sheet 4.
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6.

7:

The Subreflector Coordinate System, (Xs, Ys, Zs).
The axes of this coordinate system are orientated similarly as that of the

prime focus coordinate system. The angle between Ys—axis and Zr—axis is
36.7°. By the same token, we have:

Xr Xs
il = R4s Ys| +Tug
Zr Zs
where
0 0 1
R4 = |cos(36.7°)  =sin(36.7°) 0
sin(36.7°) cos(36.7°) 0
0
T46 = -168.976
2511.929
Examples:

a. For a point L from the reflector coordinates to the base coordinates.

X Xr
il =R 12|R23 Yr| +T34| +T23
Al | Zr|L

b. For a point M from the base coordinates to the reflector coordinates.
Xr s 1| X
Yr = R23 R12 ¥ il PR S il 32
Zr |M Z|M
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Figure 8. Foci Arrangements and Coordinate Systems for the GBT, Sheet 5.
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