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Abstract

We define and consider a scan pattern intended for use in commissioning the Penn Array.
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1 Introduction

Broadband continuum measurements, and measurements with single-dish telescopes, are often limited by sys-
tematics rather than thermal noise. This will be especially true during early 3mm observations with the GBT, as
operation of such a large structure at high frequency represents an unprecedented technical feat and there will
inevitably be much to learn about the instruments. Furthermore the GBT is not located at an optimal mm site.
Potential systematics include: variable atmospheric emission and opacity; anomalous refraction; imperfections
in the GBT pointing, focus and surface varying on uncertain timescales; ground spillover; and instrument gain
fluctuations. These limit the sensitivity of both mapping observations. For the Penn Array a potential concern
is an expected drift in the data zero-level; measurable variations could be present on timescales as short as 10
seconds and are different for each of the 64 detectors. Atmosphere variations are expected on a similar timescale.

A suitable observing strategy can significantly reduce the level of systematics enabling longer integrations, and
can permit extensive cross-checks on data consistency provided the dataset is sufficiently redundant. Here we
propose an observing mode which satisfies these criteria: a “daisy petal” 2D on-the-fly mapping mode. This
mode

e provides a rich datastream to understand the instrument and distinguish systematics from sky signal
e provides reasonable sky coverage

e is easy to understand & relate to GBT constraints

e reduces sensitivity to telescope pointing errors.

e could be useful for beammapping and holography now.

e shouldn’t be too hard to implement

An added advantage is that the modes we discuss here are closely related to an observing mode desired for
continuum point source photometry. The photometry mode is documented in a separate memo.

The organization of this memo is as follows. § 2 summarizes the constraints all GBT scan patterns must obey;
§ 3 presents related 2-dimensional patterns (daisy scan and lissajous) and some examples; and § 4 concludes.
Throughout we pay attention to practical considerations and attempt to identify limiting factors.

2 GBT Constraints

Any GBT scan pattern must comply with a number of constraints.

e Drive Velocity The software limits on the slew GBT rate are: 18'/sec (= 18 deg/min) in elevation and
36'/sec (= 36 deg/min). These are slightly downrated from the hardware limits. Note that these— and
azimuth in particular— are encoder limits. The maximum “on-the-sky” speed in the azimuth direction is less
by a factor of cos(el).

e Drive Acceleration The software limit to the GBT acceleration is 4'.8/sec? (= 0.08 deg/sec?) in each
axis. These are also encoder limits so the maximum on-the-sky acceleration in the azimuth direction is less
by a factor of cos(el).

e Drive Servo Bandwidth The error stream from the main drives is passed through a lowpass filter with a
3dB point at ~ 0.3 Hz. The secondary error loop is closed at a somewhat higher frequency but we do not
consider motions of the secondary.

¢ Resonant Frequencies of the Structure The fundamental structural resonance is at 0.5 Hz. Motions with
harmonic content near this frequency or its higher harmonics should be avoided.
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e Backend Sample Rate Since the sky needs to be Nyquist sampled, there is a maximum slew rate imposed
by the highest rate that GBT backends can sample. This rate is roughly

Vmaz = 40'/sec x (LSHZ) X ( lms) (1)

Tinteg

For most GBT data this is the key scan-pattern limitation. For 2D scans we assume an additional v/2
oversampling, i.e., when this is the limitation we downrate the maximum velocity by v/2. In addition some
instruments have a finite time response: the Penn Array bolometers, for example, are expected to have
exponential impulse responses with e-folding time constants of 1 < 7 < 20 milliseconds. Unless 7 values
on the short end of this range are realized this will be the typical limiting factor for scan patterns with the
Penn Array.

3 Daisy Patterns

Conceptually, with two orthogonal directions £ and g on the sky defined, imagine moving the telescope as

P(t) =1, (£ cos Qt + §sin Qt) sinwt 2)
Here p(t) is the telescope pointing position as a function of time, and § = 0 is the calibrator location, which is
crossed every toy. = m/w units of time. Think of this as a basis vector rotating with angular frequency 2, and a
“radial” oscillation with angular frequency w along the direction of this rotating basis vector.

The intent would be to place a calibrator source in the middle of the map and obtain a check on the telescope
pointing and anomalous refraction, instrument/telescope gain variations, and other variables every 10 to 20 sec-
onds. For the Penn Array there are also additive 1/ f drift terms from the SQUID multiplexer and this would help
get a handle on these (which you wouldn’t need a central calibrator for). It may also be possible to map extended
sidelobes this way.

More realistically the map center should be tracked with coordinates in some specified mode as before, and Az/El
offsets applied as:

B cos(Qt + ¢1) sin(wt + ¢2)
dAz(t) = 1o cos(Flo) 3
OEL(t) = rosin(Q+ ¢1) sin(wt + ¢2) 4)

This generates a roughly circular mapped patch on the sky. For generality we have added two specifiable phases.
The circle isn’t perfect since we have divided azimuth offset by the cosine of a fixed angle (the target location)
rather than doing the full spherical trigonometry problem. This is an acceptable approximation except very close
to the zenith. It would be possible for Daisy scans to apply the offsets in RA/Dec or some other celestial system,
as:

_ cos(x + ¢1) sin(wt + ¢2)
JRA() = o cos(deco) ©)
0Dec(t) = rosin(Qt+ ¢1) sin(wt + ¢2) 6)

Here decy is the map center. Advantages can be imagined for both, although the resulting maps should look very
similar. This scan pattern is illustrated in Figure 1.

A significant new capability which this mode provides is that of mapping an essentially two-dimensional area in
a single scan, which reduces the level of systematics in the map by coupling distant pixels more strongly. The
sensitivity in this map will not be uniform, since there are many crossings of the map-center; this is mitigated
somewhat by the fact that the telescope is moving fastest at this point. I have simulated a Penn Array observation
using IDL code; a 1o sensitivity map is shown in Fig 2, and the distribution of pixel sensitivities in Fig 3.
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Figure 1: Illustrations of a daisy scan pattern. The location of the “basis vector” at the end of the cycle is shown
for convenience in each panel; additionally, the location at the start ({ = 0) is shown in the top left panel. All
assume the ratio of the radial frequency to the basis vector precession frequency is 7 (arbitrary but convenient),
and that the basis vector precesses clockwise. Top Left: a single cycle of the radial oscillation. Top Right: one
and a half cycles, or one completion of the “daisy” pattern. Bottom Left: a quarter-cycle short of two full cycles.
Note that the 3-petal pattern, for a frequency ratio less than about 4, precesses contrary to the precession of the
basis vector. Bottom Right: 20 full cycles of the 3-petal pattern (elapsed time ¢ = 1.5 x 207). Here 7 is the period
27 /w of the radial component of the motion.

3.1 Properties of the Daisy Scan

The maximum velocities and accelerations are easy to calculate analytically. For the case w > (2 (radial oscilla-
tions faster than precession) we find

Umaz = Tow @)
Amaz = TO(W2+92) (8)

For any given choice of parameters rg, w, and 2 this can be checked against the GBT limits. Note that these are
all on the sky numbers; for comparison to azimuth limits one must divide by cos(el).

The harmonic content of this motion, perfectly executed, has no components higher than Q + w (be careful with
factors of 27 in comparing with structure numbers). I’m not certain if this can be directly compared with structural
resonance frequencies.

For w/Q roughly in the 2 to 4 range it can be shown that the spacing between successive “petal tips” of the 3-petal

pattern is
T—(ZTQ—W):TP—ETQ 9)

For our choice w/§) = = this spacing, measured as an angle from the pattern center, is 0.14 radians or about 8
degrees.

With w/Q = 7 the pattern covers a circle in 22 full radial cycles, or 7 minutes for 7 of 20 sec.
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Figure 2: A 10 noise map of a daisy scan comprising 22 full radial oscillations, which roughly closes. This case
is identical to that described in § 3.2 except g = 6 not 6'.7. Flux units are roughly equal to mJy per beam.
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Figure 3: Histogram of pixels from Fig 2. 5% of pixels have noise levels less than 0.2; 91% have noise levels
between 0.2 and 0.32; and 4% have noise levels greater than 0.32. Units of the x-axis are roughly mJy per beam.

3.2 Application: Penn Array Mapping

Suppose we are very paranoid and we want to check pointing and detector zero levels very t.y. = 5 sec. A set of
parameters which achieves this, and is still consistent with GBT constraints is 7 = 10 sec forw = 0.6; Q = w/7
for a non-repeating pattern and reasonable 2D coverage per radial cycle; and ro = 6'.7, which yields a peak
on-sky velocity of 2'.1/sec. This is the speed limit for the slowest detectors we might get on the Penn Array. At
zenith angles of less than 8° the encoder-based azimuth acceleration becomes the limiting factor (before antenna
velocities) and a smaller circle would need to be mapped or a longer cycle time adopted. The highest frequency
component of the motion is 0.13 H 2.

It’s worth noting that the area mapped this way is more than 10 times the Hubble Deep Field area so it could
be useful for astronomy, and not just commissioning. In a 50 hour integration there should be well over 100
starforming galaxies in this map. By relaxing the ¢y, constraint to 10 or 20 seconds, a significantly larger area
could be mapped.

3.3 Application: Q-band Beam Mapping

Suppose one wanted to map the Q-band beam (FWHM= 20" or so) or perform OOF holography at Q-band.
Suppose further one used the DCR for this, with the resulting velocity limit of 0’.8/sec. Assuming a cycle time
of teye = 5 sec (so again 7 = 10 sec and w = 0.6) and Q = w/x, we find that r, = 1'.3 is the maximum allowed
subject to the 0’.8/ sec on-sky velocity limit. At this point the primary beam would be well over 100 dB down and
this should suffice for a DC level determination. The peak acceleration is 0'.5/sec?, well away from the limits.

This approach would enable the datastream to be renormalized every 10 to 20 seconds (by a beam-center crossing)
which would mitigate the effect of gain fluctuations if they are a concern.

My guess is that this pattern would provide pretty good sampling of the beam, but I haven’t looked into this
in detail. Some applications might require Nyquist sampling of the sky, in which case a series of scans with
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well-chosen values of the azimuthal phase ¢; might be needed. It shouldn’t be too hard to investigate this with
simulations.

3.4 How to Choose Parameters

Here’s how one might typically set the scan parameters (w, Q,7,).

1. Choose t.y. based on the effects that you’re most worried about (eg detector offset drifts, gain fluctuations,
anomalous refraction); typically much faster than ~ 10 sec will not be do-able, but this fast will be wanted
if consistent with other constraints;

2. Set the radial period to 7 = 2ty (.. w = T/teye );
3. Choose {2 equal to w divided by some order unity irrational' number like e or 7;

4. As your scan pattern in all likelihood is velocity limited (probably due to your backend sample rate or
detector time constant) calculate this velocity limit (§ 2) and determine r, using Eq. 7. If a smaller value of
T, 1s desired, use that.

5. Double-check that the acceleration limit is obeyed using Eq. 8. If not reduce r, by a/amq, or increase 7

by \/@/@maqz to comply.

For cases that I have checked the acceleration only matters at elevations greater than 80°, and the GBT antenna
velocity limits don’t come into play. This is how I chose parameters for the previous two subsections.

3.5 Lissajous Pattern

A Liassajous pattern, used to good effect by SHARC-II on the CSO, is a simple variation of the foregoing:

_ cos(Qt)
6Ra(t) = m (10)
dDec(t) = Becos(Q't+ ¢) (11)

Here Decy is the map center. This would be a way to map a 2D area in a single scan without the frequent calibrator
crossings that the daisy-scan is designed to provide. Here the Ra/Dec offsets will probably be strongly preferred
since the point is to make a square map on the sky.

This pattern is amenable to the same simple analytic analysis which yielded the velocity, acceleration, and “har-
monic content” expressions of § 3.1. However relating the Ra/Dec speeds to Az/El is more complicated and needs
to take account of the field rotation; I’ve not done this in general. However a set of choices that would work is:
A = 6', B = 2'; a fast oscillation in the short (B or Dec) direction of 7 = 10 sec hence ' = 0.3 sec!; a slow
oscillation in the long (A or RA) direction of 2 = Q' /7. The peak velocity is then near our 2’/sec limit for the
Penn Array’s slowest possible detectors. Other quantities are well within limits.

3.6 Antenna Software Requirements

In addition to executing the above scan, it must be possible to easily reconstruct from the recorded FITS files the
actual pointing position of each feed of the telescope in celestial coordinates at each sampled point in time, such
as Ra and Dec.

It would also be desirable to have this mode, and other on-the-fly modes like RalLongMap, be able to raise an
“on-the-fly” flag. This would tell the Antenna manager to start going to the area of interest immediately and in
a reasonable way and not waste time trying to match velocities at the scan start, which fundamentally you don’t
care about for on-the-fly data.

nitially I chose an irrational number in order that the pattern not close, but on simulation this actually seems not extremetly useful; any
number ~ 3 gives patterns like those we present here, which have demonstrably useful properties.
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4 Notes & Conculsion

The choice of a sinusoidal radial function was motivated by simplicity of implementation, and by the simplicity
with which the resulting scan pattern can be checked against GBT constraints. More generally one could write

P(t) = ro (& sin QU + Geos Q) f(wt) (12)

where f is any periodic function. Functions more sharply peaked than the sinusoid would allow wider area
coverage, and more general functions also permit greater freedom in radial integration weightings. A drawback is
that such an approach would require detailed analysis to notch out bad frequencies etc.

Placing a calibrator at the middle of your map may also limit the dynamic range of your map; this depends on how
well we can characterize the 8' pedestal of panel-scattered flux?, and how much structure this pedestal has. My
back-of-the envelope estimate places this limitation at one part in 10* which even for a 50 mJy calibrator source
corresponds to about the expected 1o confusion level due to extragalactic sources, this might then be expected not
to be a problem.

I’ve discussed only a very limited class of scan patterns. Preliminary indications are that other scan patterns— in
particular the so-called “billiard ball” scan— will be more optimal for actual astronomy. This is partly because
billiard balls are more nearly a “constant speed” scan pattern, allowing us to operate near our limiting factor (and
simultaneously get more uniform sensitivity in our maps). However daisy scans should provide a high degree of
redundancy necessary to shake down the system, and could be useful for other applications before the Penn Array
is on the telescope.

To the extent that scan patterns are velocity limited by frontends or backends (like the DCR) a chopping tertiary
does little for on the fly maps. On the other hand if GBT acceleration or servo bandwidth limits are a factor
(not typically for cases we’ve identified here) a tertiary would be of use. If GSFC delivers detectors with time
constants in the millisecond range, GBT limits would be the relevant ones and a tertiary would help. Other factors
(like photometry and spectroscopy) also bear on the decision and are independent of this analysis.

Some open items for future work are:

e Better forms for f(t)? Maybe not necessary if what I've outlined here will do the job.

Analysis to determine limits/pick parameters for Lissajous & Billiard Ball scan patterns;

More careful choice of parameters for beammaps/OOF should this be desirable. Nyquist sampling per
beamsize criteria

add glish

pointing case (only a few petals)
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2that is, at 90 GHz we expect in the best case half the power to be scattered onto angular scales of 2\ / dpanel ~ 8’



