ELECTRONICS DIVISION TECHNICAL NOTE 195

IPG Continuum Data Collection System

Tim Weadon 8/29/03

The "IPG" Continuum System was designed and built in 1998 by Rick Fisher, Rich Lacasse, Dwayne Schiebel and Tim Weadon. Rick specified the system requirements, Rich designed and built the Filter Amplifier system. Dwayne designed and built the Clock and Switching system and Tim designed and built and specified the computer associated hardware and software. Figure 1 is an over-all block diagram of the system.

The Filter Amplifier has one SMA input and one BNC output. There are three low-pass filters one may choose. The single pole three throw switch (SP3T) allows the user to select either a 50Hz, 500Hz or 5000Hz low-pass filter.

The Clock and Switching system inputs 4 differential signals and routes them, through the ribbon cable, to the computer A/D card. Only one signal was originally requested so the system, presently, only supports one input on the first channel. This system has thumb-wheel switches to set the hardware parameters "sample rate", "switch rate" and "cycles/integration".

The enable/stop switch arms and disarms the system from any spurious signals which could trigger a false start. The thumb-wheel switches should be set when this switch is in the stop position. Once the thumb-wheel switches are set, and the computer system is on and stable, this switch may be set to the enable position. When you wish to begin a new scan the enable/stop switch should be set to stop, the thumb-wheel switches should be set, then the enable/stop switch should be set to enable. The Switch Control LED and the Recording Data LED will be flashing when the clock and switching system is running.

The Clock and Switching system provide an interrupt to the computer A/D for when to sample the data. The computer provides the "go" signal to the Clock and Switching system for when it is to start generating the clock and switching signals.

The Computer and associated hardware provide the user interface for collecting, documenting and analyzing the data. The user enters a filename and description of the data. The number of samples to blank after each switch cycle, the sample rate, switch cycle and cycles/integration. The program generates two files. The first is filename.rfi and the second is filename.rf2. Filename.rfi contains the configuration data such as sample rate, switch cycle, samples/integration, etc. Filename.rf2 contains the raw "streamed" data.

When setting up for a scan the user first sets the thumb-wheel switches and enables the Clock and Switching System. Provisions for reading the thumb-wheel switches were not made or requested so the thumb-wheel positions should be repeated on the computer GUI panel. The total number of A/D conversions (samples) is determined from this data and is used by the program for when to quit sampling, so it is important to set the switches correctly or you will not know how many samples to wait for. Otherwise this data does not affect the collection

of the data but is used by the plotting and analysis software so it is stored for later reference. The Scan Complete "LED" on the GUI screen will turn green when all the data is collected. (If this LED turns green before the Clock and Switching system LEDs stop switching or if it stays black after the Clock and Switching system stops then you know your thumb-wheel switches do not match your GUI settings.)

The GUI panel allows you to collect, load and plot / analyze data which has just been collected or data which was collected sometime in the past. When you specify the filename then press the "Read&Plot" or "Fold&Plot" or "FFT" switches the computer reads the associated filename and performs the appropriate analysis on the data. A picture of the GUI panel is shown below in figure 2.

"Read&Plot" allows the user to plot out all the data collected. The X-axis is sample number and the Y-axis is the amplitude in volts.

"Fold&Plot" averages each "cycle" of data and plots one cycle of the average of all the data.

"FFT" performs an FFT on the data. The X-axis is Hz and the Y-Axis is power. The boxes labeled "Sig/Ref", "Sig-Ref/Ref", "SIG" and "REF" are the accumulative counts of SIG and REF and the associated equation on that data. It is only filled in when you do the scan, not during post processing.

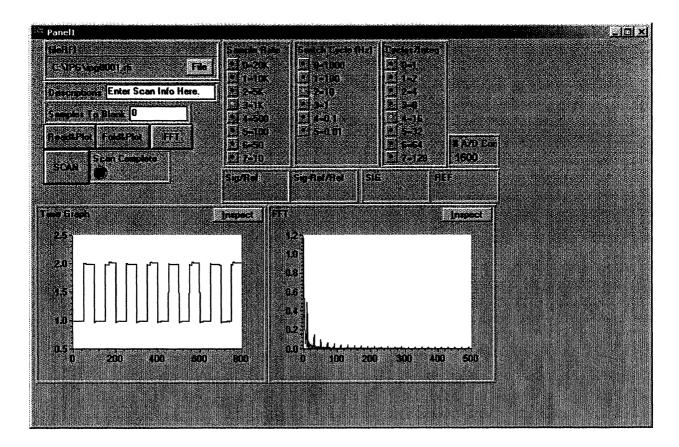
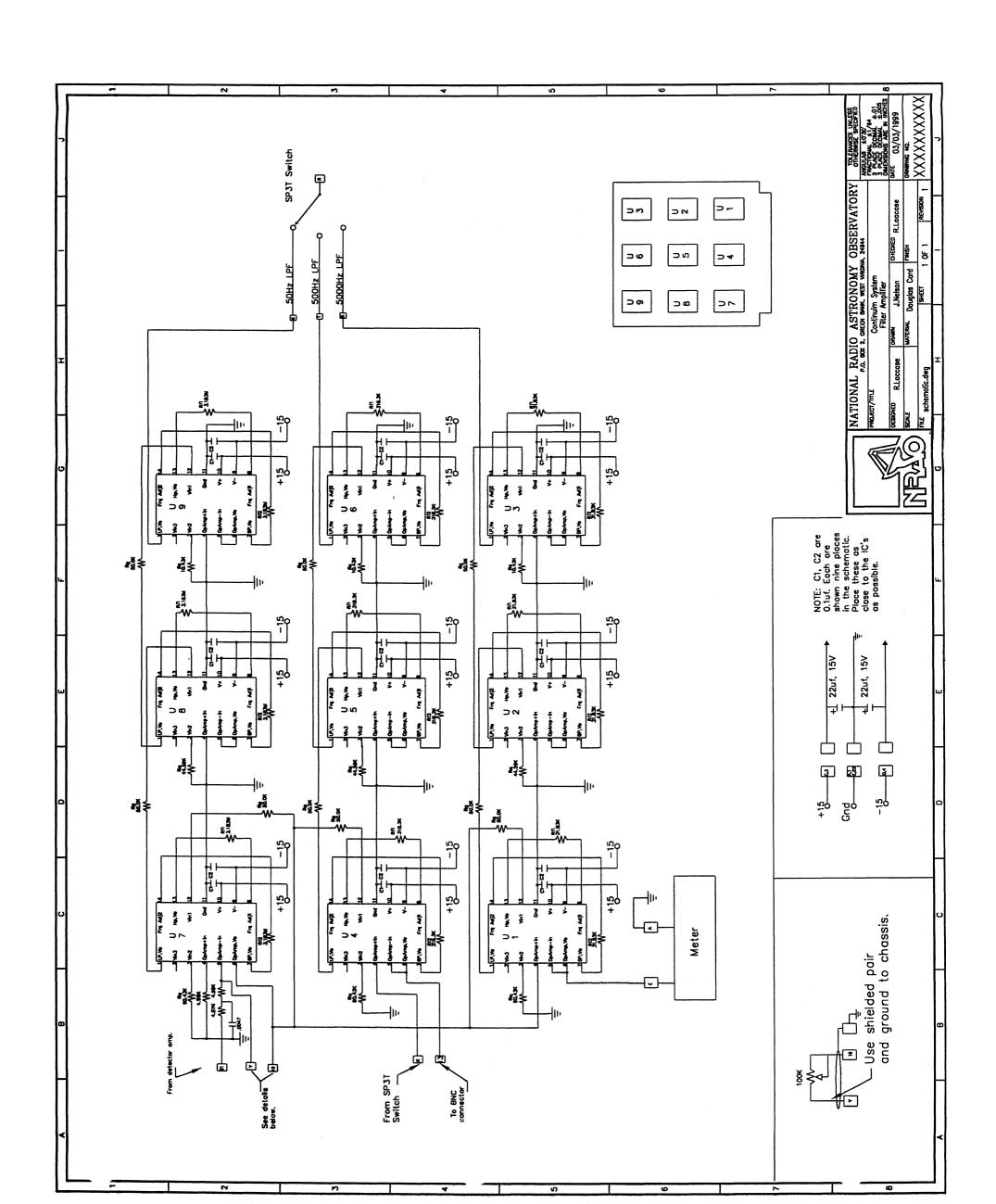
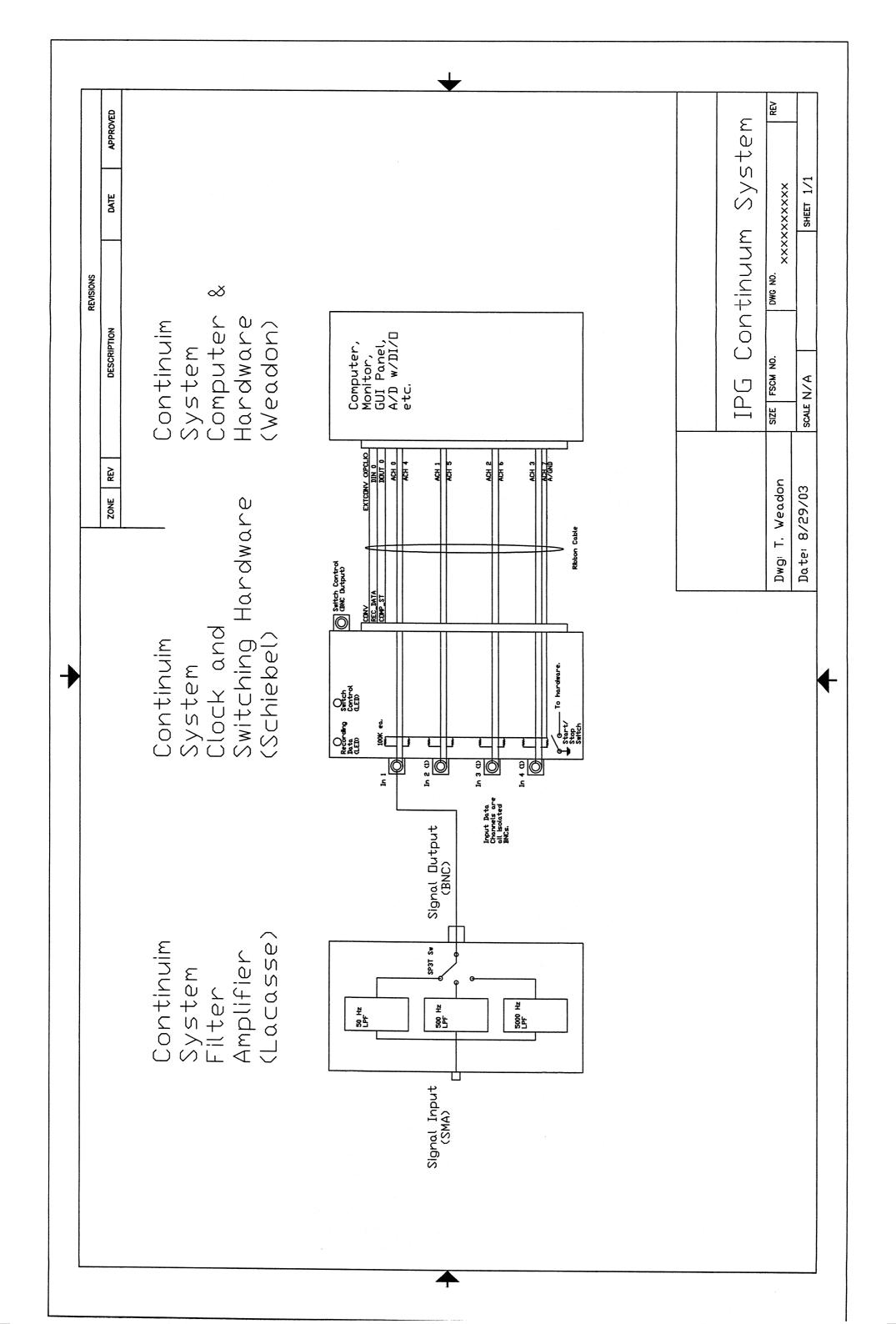




Figure 2

<u>Instructions to run the IPG RFI computer software. (Appendix A)</u>

- 1. Turn on the computer and associated equipment.
- 2. Log on to the computer.
- 3. Double click on the IPG RFI Test Software Icon.
- 4. Click on the "File" button in the "fileRFI" box.
- 5. Enter the filename you wish to store your data to or read data from.
- 6. Fill in the descriptions entry.
- 7. Set the thumb-wheel switches on the metal box beside the computer to the desired settings and the "Enable/Stop" switch to "Enable".
- 8. Set the Radio Buttons on the IPG RFI Panel to what you set the thumb-wheel switches to.
- 9. Press "SCAN" when you are ready to collect data. (Data is presently only collected on input channel 0.)
- 10. The Scan Complete light will be black during the scan and it will turn to green when the scan is complete.
- 11. The "Time Graph" will be plotted when the Scan is complete.
- 12. The data is now in the file you selected in step 5 above.
- 13. Press "Read&Plot" to read data from the file and plot it in the "Time Graph Window".
- 14. Press "Folt&Plot" to flod each cycle from the selected file into one cycle and plot the resulting "average" cycle.
- 15. Press "FFT" to run and plot the FFT on the data in the file selected.

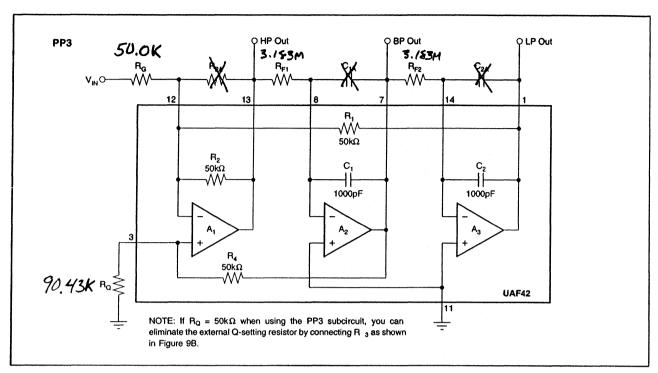


FIGURE 9A. PP3 Inverting Pole-Pair Subcircuit.

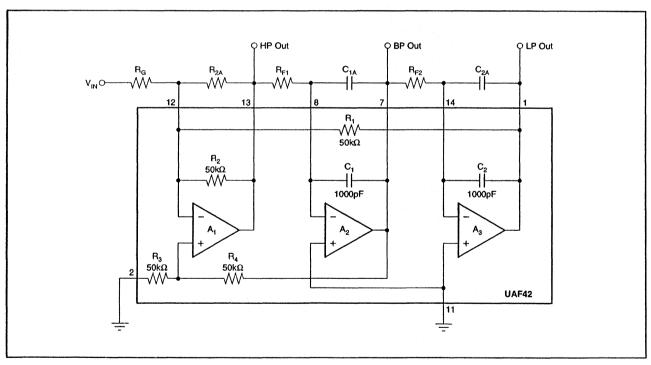


FIGURE 9B. Inverting Pole-Pair Subcircuit Using R₃ to Eliminate External Q-Setting Resistor R_G.

UAF42 Filter Component Values

R nse: Lowpass
Type : Butterworth Topology: Inverting f-3dB : 50.00Hz

Order n

Resistors : exact

_		Subckt C ext	fo Rp	Q Cp	fz Rz1	RF1,2 Rz2	RQ Rz3	RG Ckt-gain	R2A
Sub Ckt	1	PP3	50.00Hz	517.6m		3.183M	90.43k	50.00k 1.000	
Sub Ckt 2	2	PP3	50.00Hz	707.1m		3.183M 	44.59k 	50.00k 1.000	
Sub Ckt :	3	PP3	50.00Hz	1.932		3.183M	10.43k	50.00k 1.000	

Filter Block Diagram

	Sı	abckt	1	Sı	ubckt	2	Si	ubckt	3	
V)	PP3	Lp Out	In 	PP3	Lp Out	In	PP3	Lp Out O	VOUT

Build this filter by connecting filter subcircuits in order as shown in the 'Filter Block Diagram' above. See Application Bulletin AB-035 for detailed schematics of subcircuits. When no value is shown for a component in the 'Filter Component Values' table, omit the component.

Passband gain : 1.00 V/V (0 dB) Max Input : 10.00 V (Vs=+-15V)

	Freg(Hz)	Gani (DB)	Vout	insert	1 Upp	Vout =	20/0g	Vout
	10	6	1			40	9	f 4
_	40	- 3	497		20/00	Vo = N.	16	
	50	-2.85	.72		5	16 16		
	60	-9.6 db	, 33		109	Voin = No		
	70	-17	o 14		1.1.		d	
	80	-24	, 063		<u>Vo</u>	n = 10	20	
-	90	-30	. 032		,			
and screen	100	-36	,016					

*Vin = I volt (p-p or RMS)

500 HZ

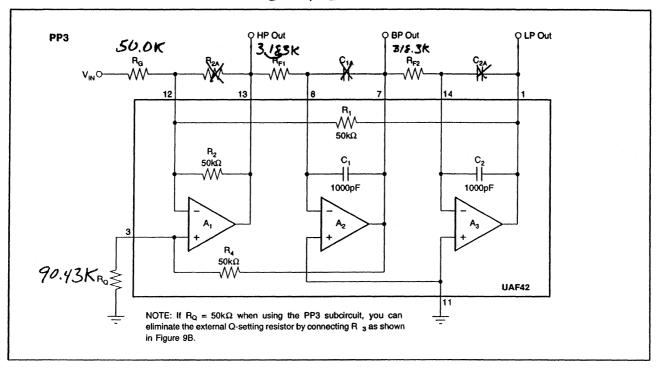


FIGURE 9A. PP3 Inverting Pole-Pair Subcircuit.

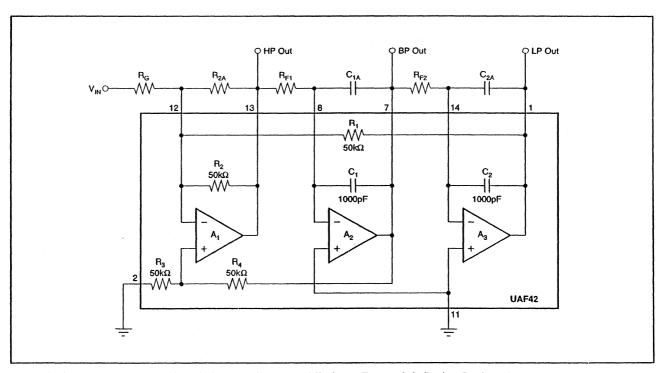


FIGURE 9B. Inverting Pole-Pair Subcircuit Using R₃ to Eliminate External Q-Setting Resistor R_G.

UAF42 Filter Component Values

Topology: Inverting f-3dB : 500.0Hz nse: Lowpass Order n : 6

Type : Butterworth Resistors : exact

	Subckt C ext	fo Rp	Q Cp	fz Rz1	RF1,2 Rz2	RQ Rz3	RG Ckt-gain	R2A
Sub Ckt 1	PP3	500.0Hz	517.6m		318.3k	90.43k	50.00k 1.000	
Sub Ckt 2	PP3	500.0Hz	707.1m		318.3k	44.59k 	50.00k 1.000	
Sub Ckt 3	PP3	500.0Hz	1.932		318.3k	10.43k	50.00k 1.000	

Filter Block Diagram

Subckt 1 Subckt 2 Subckt 3 Out In Out PP3 ----O VOUT PP3 PP3

Build this filter by connecting filter subcircuits in order as shown in the 'Filter Block Diagram' above. See Application Bulletin AB-035 for detailed schematics of subcircuits. When no value is shown for a component in the 'Filter Component Values' table, omit the component.

Passband gain : 1.00 V/V (0 dB)
Max Input : 10.00 V (Vs=+-15V)

Freg(47)	Gain (DB	VouT (CALC)	Vont mens.
100	0		
400	3	.97	.96
500	-2,85	.72	.69
600	-9.6	. 33	.33
700	-17	. 14	د ا .
800	-24	. 063	.072
900	-30	. 032	.043
1000	-36	. 016	.021

5000 HZ

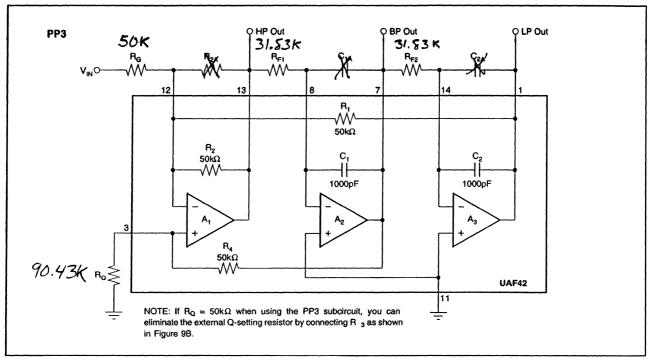


FIGURE 9A. PP3 Inverting Pole-Pair Subcircuit.

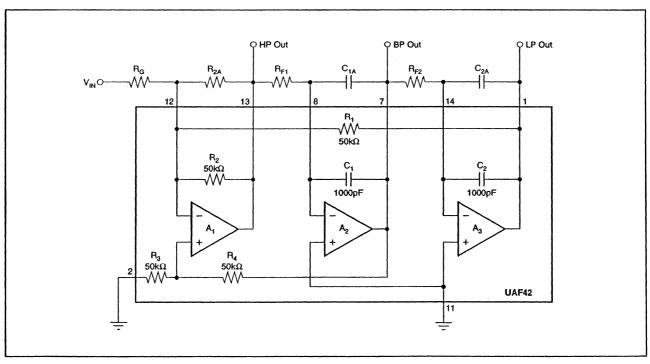


FIGURE 9B. Inverting Pole-Pair Subcircuit Using R₃ to Eliminate External Q-Setting Resistor R_G.

UAF42 Filter Component Values

R' onse: Lowpass Topology: Inverting f-3dB : 5.000kHz

: Butterworth Order n : 6
Resistors : exact

Resistors : exact

	Subckt C ext	fo Rp	Q Cp	fz Rz1	RF1,2 Rz2	RQ Rz3	RG Ckt-gain	R2A
Sub Ckt 1	PP3	5.000kHz	517.6m		31.83k 	90.43k	50.00k 1.000	
Sub Ckt 2	PP3	5.000kHz	707.1m		31.83k	44.59k	50.00k 1.000	
Sub Ckt 3	PP3	5.000kHz	1.932		31.83k 	10.43k	50.00k 1.000	

Filter Block Diagram

Subckt 1 Subckt 2 Subckt 3

Build this filter by connecting filter subcircuits in order as shown in the 'Filter Block Diagram' above. See Application Bulletin AB-O35 for detailed schematics of subcircuits. When no value is shown for a component in the 'Filter Component Values' table, omit the component.

Passband gain : 1.00 V/V (0 dB)
Max Input : 10.00 V (Vs=+-15V)

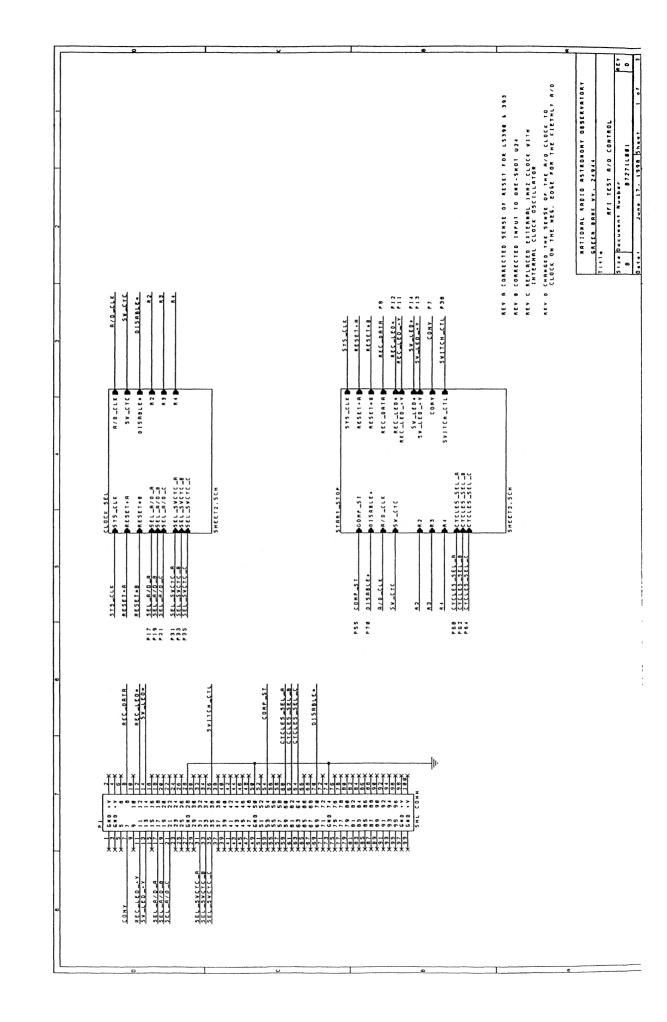
Freg(Hz) 1080	Gain	Vout (ZATE)	Vont mens.)
4000	-,3	. 97	.96	
5000	-2,85	.72	.70	
6000	-9.(.33	. 23	
7000	-17	.14	./3	
8000	-24	,063	.066	
9000	-30	.032	.031	
10000	-36	.016	.020	

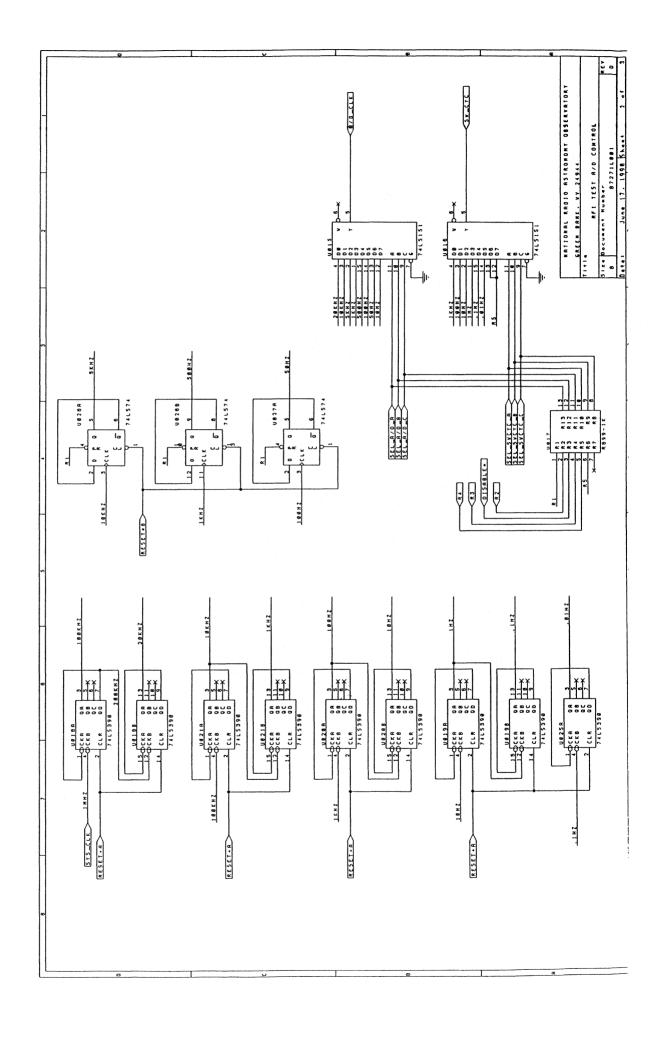
HSOLATED BNC'S

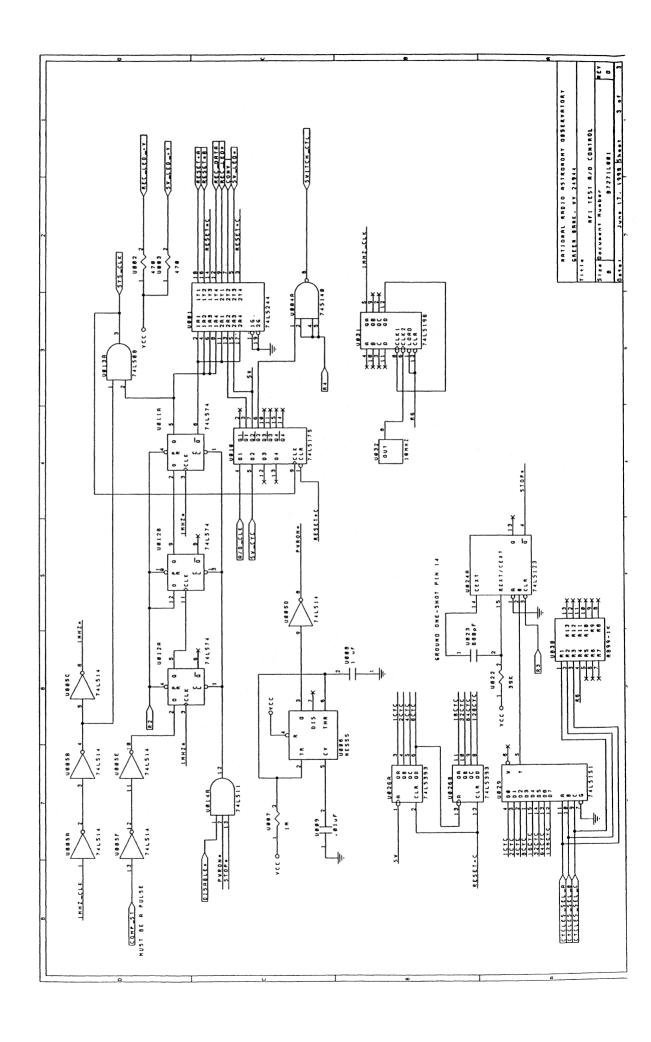
5/26/98

IN SWITCHING TO A KIETHLY AlD HAVE TO GENERATE A IMHZ CLOCK SINCE ONE IS NOT AUDILAGLE FROM THE ALD. HAVE TO ADD TWO CHIPS USI - USZ.

U31 LS196		032 09	<i>5</i> C
1 <40 14	B40	1 649	14 1349
2 41 /3	41	2 50	
3 42 /2	42	3 51	
4 43 11	43	4 52	11 52
5 44 10	44	5 53	h 53
	45	6 54	9 54
7 646 8	B46		8 R55
ADD		ADD	en e
U31-14 70 45	~	B40 -	B43V
U31-7 70 G.	NC	C46-	13476
U32-14 To +	5	1349 -	1351V
U32-7 TO G.	~D	C55 -	B556
U31-1 TO U3		C40 -	1341
U31-1 TO U3	00-4	< 40 -	146
U31-12 TO U	31-8	1342-	1346
		_	
U32-8 TO U	31-6	B55 -	<45
REMOUE		PEMO	
U5-1 TO P	N 44	C23 -	1444
10		n	.
125-1 TO U	21. —	ADI	
U3-1 10 U	21-2	C23 -	~77


N.							_		_			٠		_		_									_					_		_					
~ ~	54	52	50	48	46	1		42	40	0		36	34		70	30.	0	3	26	24		3	20	-		-6	4		7	-0	Œ			4	· ~	•	11
×	- 6	- \		• •	5 -	F-	~	• •	•	G -	· E	- }	-	•	Ğ	•	D-	· ¥	• •	•	Ğ		-	v •	•			8			•	Ğ	-/	\- •	Ÿ		10
₹	•	•	•	• •	•	• •	•	• •	• •	•	•	•	•	•	•	•	• •	•	• •	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	
<	• • •	•	•	• •	• •	• •	•	• •	• •	• •	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	•	•	•	• •	•	• •	7	•	•	•	• •	• •	•	9
ר ,	•			••	•	•••	•	•	•	•	•		•	•	• :		• •	•	•	•	•	• •	•	•	•	-	•	•		•	•	•	•	• •	•	•	
S						•		-						_			•		•				_	•		_					-		•		•	•	8
20	•		•		•	•	•			•		•	•	•	•	•		•			•	• •		•		•	•		•	•	•	•		•	•		
מ	• • •	· •	•	••	• •	• •	•	• •	•	S	• •	•	25.0	•		•	• •	• • • • • • • • • • • • • • • • • • • •	, -	• •	٠. در	• •	•	\sis	•	•	• • • • • • • • • • • • • • • • • • •	•	• •	•	•		•	••	• •		7
z	٠. د	•	•	• •	~	• •	~	•	• •		- •	•	٠. •	•	•	-	• •	• •	•	• •	•		•	₹,	•	•	ີ.	•	• 1	3	• (•	•	• •	٧.	•	6
X	•	•	•	• •	•	•	•	•	• •	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	- •	•	•	
_	• • •	•	•	RE	99	-11 -3	7	*	45	15.	j	2	9	•	1	57	4	2 8 2	7	- }	457	14	 ر	7	-	TL	3 3	9	3,	26	•	1	5 3	90	2	5	5
×	•	•	•		•	سقت	91	•		•	- -4		•	•	4	• ,	3:	22	L	- 4	٠				-		•		بع	•	•	مه	•	••	•	لميا	
<i>د</i> .	• • •	•		• •	• •	•	•	•	• •	•	L	51	22	5	24	-	-	• ?		. S	3;	70	21			4	3	90	2		•	1	53	39	0/	9	4
<u>.</u>	•		•		•		•			•	_		•		•	•	•	•	-	~	•	-		•			•			•	-	•	•		•		
71				• •										۷.	> 3	91	7	8	-	R	89	911	۲ ۲			15	15	}	7	4		1	5/	51	7	5	;
m	•		•		•		•			•			•	_		•	-	•			•						•			•		•	•		•		
0						. •		•		LS	"		14		1	50 ///	<i>X</i>	/3 	3		15	74	/ /	2	L.	ľ	ا د ا	74				4	5/	75 ••		n.	•
ဂ	05		•	•	•	45		- 	•		, s	7		5	s 5	•	TI	S	141	••	-7	, ,	51	40	•	4	•		2 1/4		15	2	44	•	• -•-	; 1	
œ			2		•			3.1	_l	•	ij	3	-!	-	6				-	•	4	•	4		-	-	1	. ?	}			•	_) 		1
	550	q -	5 <u>1</u>		47G	-F	A C. A.			• 39G	-1	E -	35V			36	D	- 2	371		236] - (: -	A61.			56	- 6	-	Ž		č	รี -	Α-	¥.		
\neg	>		••	• •	• 9	• •	• •	80	• •	•	• 6		•	•	• 60	• •	•	8	5	•	• •	\$	• •	•	• ;	5	•	• •	20	• •	•	• ;	5	• •	* %		_
					U 4	9	S 1	4	0		/																				3 11		17	٥.	S.		
				/ -	1		7	4		,	/ //																	(ع ر	8	1	N	1	11	/		
				/			1	1		1);					N-	7		


STA-1800U I/O Connectors J1 and J2


Pin assignments for I/O connectors J1 and J2 of the STA-1800U screw terminal accessory are shown in Figure B-2.

```
20 - ODACO (Note 1)
22 - ODAC1 (Note 1)
24 - -15V
26 - ±15 V Return
28 - GEXT
30 - DI 0
32 - DI 2
34 - DO 0
36 - DO 2
                                                             10 - CH04 HI
12 - CH05 HI
02 - CH00 HI
               8 - CH01 H
                                06 - CH02 HI
                                               88 - CHO3 HI
                                                                                               14 - CHO6 HI
                                                                                                              16 - CH07 HI
                                                                                                                                18 - LL GND
                                                                                                                                                                                                                                                                                                                                                44 - MUX 94
                                                                                                                                                                                                                                                                                                                                                                46 - MUX 06
                                                                                                                                                                                                                                                                                                                                                                              48 - +5 V
50 - D GND
                                                                                                                                                                                                                                                                                              38 - XPCLK
                                                                                                                                                                                                                                                                                                             40 - SSHO
42 - TGIN
                                                                                                                                                                                                                                                                                                                                              MUX 05 - 43
MUX 07 - 45
                                              CH02 LO or CH10 HI - 07
CH03 LO or CH11 HI - 09
                                                                                               CH05 LO or CH13 HI - 13
CH06 LO or CH14 HI - 15
                                                                                                                                              ODAC2 (Note 2)- 19
                                                                                                                                                                                 +15 V - 23
                                                                                                                                                                                              ±15 V Retum - 25
D GND - 27
                                                                                                                                                                                                                               DI 1-29
                                                                                                                                                                                                                                               DI3-31
                                                                                                                                                                                                                                                                                                               TGOUT - 39
                                CH01 LO or CH09 HI - 05
                                                                                                                                                                                                                                                              DO 1 - 33
                                                                                                                                                                                                                                                                               DO 3 - 35
                                                                                                                                                                                                                                                                                               DOSTB - 37
                                                                                                                                                                                                                                                                                                                                                                                                D GND - 49
              CH00 LO or CH08 HI - 03
                                                                                                                                                                ODAC3 (Note 2) - 21
                                                                                                                                                                                                                                                                                                                               MUX 03 - 41
 (User Common Mode) U_CM MD - 01
                                                                              CH04 LO or CH12 HI - 11
                                                                                                                                CH07 LO or CH15 HI - 17
                                                                                                                                                                                                                                                                                                                                                       <sup>I</sup> DAS-1701ST-DA, DAS-1702ST-DA, DAS-1702HR-DA,
                                                                                                                                                                                                                                                                                                                                                                                          <sup>2</sup> DAS-1701ST-DA and DAS-1702ST-DA boards only
                                                                                                                                                                                                                                                                                                                                                                            DAS-1701AO, and DAS-1702AO boards only
```

Figure B-2. STA-1800U I/O Connectors J1 and J2

