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. Introduction

TCHEBx is a design tool for the synthesis of homogenous stepped transformer prototypes with
Tchebyshev weights. This set of subroutines is a straightforward implementation with first order
accuracy in the junction reflection coefficients [4, 5. 12, 15]. The user specifies the desired bandpass

101 < f < f02 relative to the cutoff frequency fc , the number of transformer sections N, and
the desired input and output guide dimensions. The transformer dimensions computed with the
algorithm agree with those obtained with the tables of Matthaei, Young, and Jones [ 8 

J 
to a few

parts in 104 . Design examples are given along with typical measured data.

2. Rectangular Waveguide Transformers

A homogenous TE% transformer has a constant broadwall dimension, c/ o , and varying guide heights,
bi (see Figure 1). The constant broadwall dimension results in a guide dispersion along the direction
of propagation which is independent of position or "homogeneous" throughout the structure. The
steps in guide height are used to produce the desired reflection amplitude taper. The section lengths
are nominally

' g1 "g2 

2( A91 + A32)

where Agi and Ag2 are the guide wavelengths evaluated at the band edges. Thus, the structure is
synchronously tuned at frequency

1 0 A90 /4 = (1)

The number of sections N, normalized fractional bandwidth

2(A91 Ag2) 
Wri

Agi Ag2

and transformer impedance ratio

R, ZN_FilZo = bN+ilbo,

'If higher precision is required, for N < 6 sections. Alison's [1] polynomial evaluation of the junction
weights is recommended. One cautionary note in the limit of vanishing reflection coefficient magnitude: the
reflection due to the junction discontinuity must be small compared to the reflection due to the impedance
step for the first order treatment to be valid. In practice, this limitation can be circumvented by synthesizing
the desired junction reflection coefficients by successive approximation or gradient search (see, e.g., [ 3 ]).
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determine the voltage standing wave ratio of the transition over the pass band. For a Tchebyshev
taper, the maximum in band reflection is approximately

T I  cos(6) 

N cos( )) in(R0) 
VSWR 1 + ln(R0) < 1 + (5)

TN ( 1cos(00) )
( 1 

TN 
cos(0,))

where TN is a Tchebyshev polynomial of order N. 6, = (2 — wOr/4 is the electrical length at the
lower band edge, is the electrical phase between steps, and it is assumed R o < (2/w q ) N/2 [8].
The non-ideal performance of the step junctions is compensated by correcting the section lengths
[4, 8, 14] as outlined in Section 3. An example input data file and the resulting design are outlined
in Section 4. The performance of typical designs is presented in Figure 4.

3. Transformer Section Length Estimates

For a small E-plane step, the discontinuity in waveguide cross-section only has a second order effect
on the junction VSWR. The presence of the discontinuity is equivalent to an additional phase shift.
To minimize the total junction reactance, symmetrical steps are preferred.

For an H-plane step, in addition to the phase perturbation introduced by the non-ideal junction,
there can be a significant perturbation on the junction reflection coefficient [16]. The presence of
the step increases the effective impedance ratio between the two guides. If H-plane steps > 10 %
are used, the first order treatment fails. As the guide approaches cutoff, larger H-plane steps can
be accommodated.

If both E- and H-plane steps are required, the total energy stored at the junction should be mini-
mized. This will reduce the loss and dispersion [8. p. 344]. The normalized junction susceptances
are computed as follows (see Figure 2):

(a) Susceptance of an Abrupt E-Plane Step [7, (pp. 307-310)]:

bri  BE (1q2

Ag 2) Ag
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PI 17

1 — 3 + 1 + )
 —

16
(6)

structure,where ,3 (1 — b 2 _ 1 /b) < 1, and Ag = 2Agi- 1 Agii()
i
gi-1 Agi). In a homogenous

Ay = Ago , in each section.

(b) Susceptance of an Abrupt H-Plane Step [7, (pp. 296-304) 2]:

2 Consider Equation lc [7] in the limit where the two guides have approximately the same broadwall
dimension a a' (i . e. , 3 1 — a' I a 0). The impedance ratio for the two guides should reduce to

Zi
o (rib l A l

g la'A o ) aAg'

Zo (77b)glaA0) a'Ag

where Ag and Yg are the guide wavelengths in the two rectangular sections (see [7], Figure 5.24-1). This
would suggests that Va a'/A ll a should be replaced by A i

g a/Ag a i in Equations la, lb, and lc. Also, see the
discussion in [9].
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where a E (1 — <1, Q = 1 — 1 — (2a/3A 0 ) 2 , and A o is the free-space wavelength
which corresponds to the transformer synchronous frequency. For a pure H-plane step, we note
the following: the effective impedance ratio is greater than the ratio of the section's characteristic
impedances [9 ]. In addition, the guide wavelength changes and the terminal plane shifts out of the
plane of the junction. These undesirable effects provide a strong motivation to keep a as small as
possible. In order for the transformer sections to maintain the desired phase relationship over the
design bandwidth, an approximately homogenous structure is desirable.

The reference plane corrections to the section lengths are applied by uniformly weighting the
junction's susceptance due to the E- and H-plane steps. With this convention, the corrected length
of the i th section can be approximated by

Agi ( 2
1 — (160 + 60+ — 1 60— — 60+ii))4

as described in [8], where the phase shift

tan 
— IbHil

— .•-, (9)2 zzl 1,--1

is small compared to one radian. This physically corresponds to weighting the first order phase shift
for each plane by its stored energy. For a homogenous rectangular transformer, there are no steps in
guide width and bfl = 0. In a transformer with inhomogenous cross-section, the capacitance due to
changes in height can be compensated by corresponding inductive steps in width at each junction
{3, 201. It is important to keep in mind, however, for this simplistic circuit model to approximate
reality, the impedance ratio resulting from the H-plane steps must essentially be unity. Further
refinement of the transformer's response can be realized through the use of a full-wave analysis for
optimization (see, e.g., [2, 11]).

4. TCHEBx: Homogenous Transformer Design Example

) Input Data File: TCHEBx.IN

4 0.4200 0.1700 0.4200 1.2200 1.9800

(b) Output Data File: TCHEBx.OUT

Number of sections (N): 4
Lower band edge (folifc). 1.22000
Upper band edge (fo2/1c): 1.98000

Design frequency (fo/fc ): 1.56504
Fractional bandwidth (wq): 0.83900
Transformer impedance ratio (Ito): 2.47059
Max in-band VSWR ( VSWR ): 1.02472

(8)

3



TCHEBx.F: Transformer Dimensions

Section Width Height Length

(i) (ai) (bi) (1i)

0 0.42000 0.17000 0.17443
1 0.42000 0.18563 0.16774
2 0.42000 0.23129 0.16583
3 0.42000 0.30870 0.16884
4 0.42000 0.38464 0.17820
5 0.42000 0.42000 0.17443

5. Rectangular-to-Circular Waveguide Transitions

Let us briefly consider the TE% — to — TEL waveguide transition reported in the literature by
Bathker [ 25]. This transition plays two roles it acts as a mode converter and it transforms the
impedance level between the two guides. The transition is designed as follows: To minimize the
effect of guide dispersion between the sections and simplify the design, a constant cutoff is main-
tained throughout the structure. For the rectangular and circular guides, the cutoff wavelengths
for the dominant modes are A c (TE .

3
0 ) = 2a and A c t TETA ) = 2rris ii , respectively, where a is the

rectangular guide broadwall dimension, r is the cylindrical guide radius, and s il = 1.841184 (see
Figure 3). Equating the input and output cutoff wavelengths, we obtain the constant cutoff radius,
rpyie = ao s idr [23].

The normalized rectangular waveguide impedance in the power-voltage basis is Zi 2b/a, where
a i and bi are respectively the i th section's width and height. For sections with truncated corners 3,
the height and width are varied with constant section impedance while searching for the cross-
section which maintains a constant cutoff in the structure. We use the Rayleigh-Ritz procedure
[10] to numerically estimate the eigenvalues in the truncated sections. To minimize the error in
the eigenvalue determination, the dominant mode rectangular guide eigenfunction is used as the
trail function for sections i = 2,3 and the dominant cylindrical eigenfunction is used for i = 4.
Bathker's measured data is presented in Figure 5 along with a finite element calculation of the
reported structure's return loss. The results of the synthesis outline here are also displayed and are
referred to as "Corrected Eigenvalue" in the figure. The normalized dimensions for both transition
designs are given in Table 1.

This algorithm is unable to exactly reproduce the dimensions given in Bathker's Table 1. Several
comments are in order: 1.) For a R, 2.0 transformer ratio and normalized fraction bandwidth of
wg = 0.8, the observed response is 12 to 18 dB higher than the sidelobe level in an ideal Tchebyshev
taper. In addition, the response does not have the correct placement of the nulls and maxima in the
passband (i.e., there should be N = 4 zeros the data suggest that significant phase and amplitude

3The corners are truncated if the width and height for the it h section exceed the boundary defined by
the circular waveguide, rp

2
3, 1, < (a i /2) 2 	(b i /2) 2 [26]. Inserting the expression for the normalized guide

impedance, we find for Zi I2 > NI(2s li a o hra i ) 2 — 1 0.61. the transformer sections are truncated.
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TABLE 1

STEPPED TEo to - TE7 1 WAVEGUIDE TRANSITIONS

Section Width Height Length Cross-section
a i b i Type

[as ] [ac] [as] 

Bathker [25 ] 0 1.0000 0.5000 0.4288 Rectangular
1 1.0000 0.5337 0.4119 Rectangular

2 1.0007 0.6326 0.4028 Rectangular

3 1.0195 0.8065 0.4142 Truncated, 2r/a 0 = 1.1721
4 1.0786 1.0107 0.4281 Truncated, 2r/a 0 	1.1721

5 1.1721 1.1721 0.4288 Cylindrical, 2r/a 0 	1.1721

Corrected Eigenvalue 0 1.0000 0.5000 0.4288 Rectangular
1 1.0000 0.5335 0.4135 Rectangular

2 1.0009 0.6326 0.4098 Truncated, 2r/a 0 = 1.1721

3 1.0209 0.8079 0.4151 Truncated, 2i/1a 0 = 1.1721

4 1.0558 0.9828 0.4349 Truncated, 2r/a 0 = 1.1721
5 1.1721 1.1721 0.4288 Cylindrical, 2r/a 0 = 1.1721

The mode transducer dimensions are expressed in terms of the input rectangular guide
broadwall, a,. The computed section length and cross-section dimensions are uncertain by
approximately +0.003 for the corrected eigenvalue synthesis. The additional significant
figures given in the table indicate the geometry modeled.

errors are present in the taper). 2.) The eigenvalues used in [23, 25 are forced to match those of
rectangular and cylindrical guides at the endpoints by imposing a {1 - sin 4 } weighting. 3.) The
exact section length correction is stated to be, "based on weighting the length corrections according
to E- and H-plane susceptance magnitudes...[ 25 ]." In the small reflection limit, the junction
phase shifts are < 71/4. Under these conditions, weighting the phase shifts with the susceptance
magnitude reduces to a uniform weighting of the phase shifts computed for the two planes. 4 4.)
Although the impedance basis is "rigorously consistent with the power-voltage...for the dominant
mode rectangular and cylindrical waveguides...[ 25 ]," this condition is not met in the presence of the
stepped junctions required to maintain constant cutoff. This can be physically seen by noting that
an H-plane step has a non trivial turns ratio [9, 16] (i.e., such a junction is inherently a transformer
with a turns ratio greater than the ratio of guide impedances). This effectively increases the total

impedance ratio required for the transition. 5.) The junction reactances have been ignored in
the design procedure. Since the Pyle condition fixes the relation between the input and output
guide geometry, this effectively increases the required transformer ratio by the product of the excess
VSWR's resulting from the junction reactances.

4 Recall the susceptance is proportional to the phase shift in the small angle approximation. The weighted
junction phase shift is < q >R-d-' (01 - 0 2

H )/(OE OH) = OE - OH. If one looks at the capacitive/inductive
corrections stated in [25], the section lengths reported are consistent with an infinite E-plane weight for
all sections except for i = 3 (?). In Padman [26], a similar weighting scheme is more concisely described.
However, in computing the junction phase shifts, the admittance ratios are given as Yi + i /Yi = bi/bi+i
for both E- and H-plane steps (TE 0 illumination). For internal consistency, this should read Yi + i /Yi =
b i a i +dtgi /b i _fi ct i A gi + 1 . In the absence of a closed-form expression for the susceptance of a truncated guide
junction with sufficient accuracy, we estimated 13 and 14 from finite element calculations for the corrected
eigenvalue taper design.
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These observations suggest some degree of caution must be exercised in using the design synthesis
outlined by Bathker. The cumulative effects of the mechanisms outlined above are estimated to
increase the effective transformer ratio to R, 2.6. This suggests that a 0 to 6 dB improvement in
the return loss to the corrected design might be expected (notice the null at the low end of the band is
washed out and the sidelobe distribution is unequal for the corrected eigenvalue design) from further
refinement of the synthesis procedure. From a fabrication and computational standpoint, however,
increasing the return loss to —35 dB and correspondingly adjusting the fractional bandwidth
might result in a more productive design goal (alternatively, the number of steps should be increased
to N = 5). A summary of circular-to-rectangular transitions of potential interest is given in the
bibliography.

6. A Comment Regarding Impedance Concepts in Guiding Structures

The generalized impedance concept allows the machinery historically developed for TEM transmis-
sion line synthesis to be used for waveguide structures [13 ]. Three definitions are commonly used
in guiding structures for the average impedance:

2P/II

Zvp V*1/72P

where,
1
2 ( 

x d

is the power flux through the guide cross-section S,

i=f(ñ xI) d

is the longitudinal current flow in a closed path C around the port (the net current flow through
the port is zero, the current of interest is the average of the absolute value of the current flowing
into and out of the port), and

V = max { IB — 
( E

.
 • 11) • 1-1) • di}

A

is the peak voltage across the cross-section (A and B are the points on the port where the potential
difference is maximized). These relations satisfy the following: Zpi < Zvi < Zvp and Zv i =

( ZpiZvp) 1/2 . All three definitions are proportional to the wave impedance, ZEH, of the mode
under consideration. See Table 2 for the dominant circular and rectangular guide impedances
computed from these definitions.

The ratio of the response to the driving force is the generalized impedance. For a TEM mode, the
definitions involving power form upper/lower bounds on the guide's characteristic impedance. For
a non-TEM mode, there can be some ambiguity identifying which field parameter plays which role.
The magnitude of the impedance presented by the guide cross-section is only determined up to a
multiplicative factor dependent upon the details of the definition. Since the topology freely admits
the insertion of an ideal transformer, only the scattering parameters are observable. The choice
of the "best" impedance basis is intimately related to the symmetry of the guiding structure and
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TABLE 2

VVAVEGUIDE IMPEDANCE BASIS 

Impedance TE rfo TE71

Definition [7/AgiAoi [77Ag/A9]
Z

EH 1 1

Zpi 7r2b/8a 741 -- 41)/8

Zvi rb12a fo
sil dx 1._11 (s ii ) — 1

ZVP 2b/a 2

= (ao /€0 ) 1/2 	377S2 is the intrinsic impedance
of free-space.

the discontinuities present in the system. For the single mode integrated impedance concept to be
valid, the mode's symmetry should only be broken along one of the integration paths. In addition,
the field distribution on either side of the junction must have the same overall symmetry.

The above definitions can provide useful guidelines for a design in this limit. For example, Zpi is
expected to yield useful results when the longitudinal current can be uniquely defined (e.g., with
TEVo illumination a change in guide width or a slot like perturbation), Zvp is a good impedance

basis when a potential can be uniquely defined (e .g.. changes in guide height or a strip -like pertur-

bation), and Zv i is useful for structures where the potential and the longitudinal current are both
uniquely defined (i.e., TEM mode). In expressing the effect of a waveguide junction in terms of
the observable scattering parameters, we note that the above definitions are physically equivalent
to expressing the dominant mode impedance in terms of the appropriate cross-section average and
the higher order terms as a lumped reactance. Since all measurable quantities appear as impedance

ratios, if the symmetry implied by the basis is present, the details orthogonal to the discontinuity
drop out.

This may be the origin of the common assertion that the exact impedance basis is unimportant
as long as the same definition is used throughout the calculation. Strictly speaking, this implies
a level of symmetry which may not be present. 5 Since the averaging process is not unique, it
is quite easy for the details of the impedance definition to erroneously appear in a calculation of
the observable parameters. 6 In structures with low symmetry. these simple averaging procedures

cannot a priori be expected to accurately represent the generalized impedance at each junction.

To accurately predict the behavior of the entire structure, a full analysis of the relevant modes is

required (see, e.g., the techniques outlined in [27]).

5 1n a complete modal description, two of the following conditions must be realized: the transverse
electric fields are matched, the transverse magnetic fields are matched. or the complex power is conserved.
We note that the implied separable nature of the impedance is only approximately achieved under the best of
conditions (the form of the impedance matrix is over-constrained). To the extent that the junction symmetry
allows this cancellation to occur and the section can be approximated as a scalar (i.e., a single term of a
modal expansion), the impedance basis concept is useful.

6 In a particular basis, the expressions employed to represent the system may simplify or improve con-
vergence; however, the underlying physical outcome does not depend upon the choice of representation.
Although the impedance concept outlined is intuitively appealing, it is not necessarily the "natural" pa-
rameterization for -waveguide scattering problems. In throwing complete rigor aside, we strive to retain the
salient features of the underlying physical (and calculable) processes in the hope that the resulting prototype
design can be used as a starting point for optimization.
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Figure 1. Stepped Waveguide Transformer
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Figure 2. Rectangular Waveguide Step Discontinuities

Figure 3. Stepped TE i°0 — to — TE° Junction with Constant Radius
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