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Comments on Eul and Schiek 1991

John Granlund

Over the past score of years, the microwave literature, particularly the
IEEE Transactions on Microwave Theory and Techniques, has carried many
articles on network analyzer calibration, indicating an extensive and
continuing interest in this process. As seems to be more the rule than the
exception these days, many of these articles are too cryptic to be understood
by someone who has not followed the subject from the very beginning. I have
selected Eul and Schiek

* as a recent and quite complete paper on network
analyzer calibration, and I offer the following comments as answers to the
questions that struck me as I first read their article.

1. 4-Port to 2-Port Reduction

Do Eul and Schiek's (1), (2) and (3) really lead to (4), or is this just
wishful thinking? They really do lead to (4), as follows: With unnecessary
subscripts removed, (1) can be written

b1— S 11 al + 
S

12 a2 + S 13 a3 S- 14 a4

b
2
 
= 

S
21 

al + S22 a2 4- S23 a3 + S

- 

24 a4

b 3 	S31 a l + S32 a2 + S33 a3 + S34 a4

b
4
 
= 

S
41 

al 4- 
S42 a2 S43 a3 + S

- 

44 a4

Let the boundary conditions and measurement channel gain expressions from (2)
and (3) be written
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and used as written to replace b b 4 , a2 and a 4 in 1> through 4>. Discard l>.
There remains
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*H. J. Eul and B. Schiek, "A Generalized Theory and New Calibration
Procedures for Network Analyzer Self-Calibration," IEEE Transactions on Microwave
Theory and Techniques, vol. 39, no. 4, April 1991.
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Solve 3> for al and substitute in 2> and 4>. After collecting terms, this
yields
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Now clearly, the result of solving 2> and 4> for m 1 and m2 has the same form
as Eul and Schiek's (4), which was to be shown. Exact expressions for the Aqi
of (4) in terms of the S ii and the ni and r i are not wanted. These calibration
constants will be determined to within a common multiplier by using three of
the eight equations that can be written from (14) and (21).

2. Calibration Constants 

Up to this point, the matrix equations have mostly involved 2x2 matrices,
but now a set of 4 equations and 4 unknowns, described by the 4x4 matrix C, is
sought for evaluation of the calibration constants. To reach (14), it is
convenient to start with (13), rewritten as

A ----- QxAxP-1 ----QxAxRt , 5>

where

R = Pt-1

is one of the ingredients of Ô, as is expressed by (15). Next, 5> is expanded
to read
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The four equations for the are now in evidence. If A is subtracted from
both sides first, the four equations read

• = (Q„Rii - 1) An 011R12Al2 Q12R11A2 012 12 22
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Notice that matrix ö of (14) is correctly summarized by (15).

3. The Rank of ö 

This question is raised following (15). Comparing 19) with 13), it is
seen that

A Y x X-1

is a potential solution of (13). To investigate this solution I'll write
(18) as

where the a's are free parameters. Then

With Ot3 and b = a4
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which carries the two free parameters a and b. Thus the rank of a must be
� 2.
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det U = det V det R = det W

27) (29b)
det N

3 det M
3

det N
3 det M

3
det N, det M, det N2 det M2

4. Equation (23) 

It would have been helpful if, in introducing (23), Eul and Schiek had
said "Substituting B -- from (12a) -- in (11) . . . ."

5. Only Seven Unknowns in A and B? 

Yes. Because of the form of

= A-1 x x B, (11)

which will be used to evaluate the parameters N. of a DUT, it is clear that A
and B could both be multiplied by the same number without affecting parameter
determination.

6. n c N

This means that n belongs to the set N. Mathematicians sometimes use N to
mean the set of positive integers.

7. Equations (30b) and (29h) Provide the Same Information? 

Yes. Consider (27), (29b), and (30b), which can be variously written as

det P = det Q

det N2 det M2

det N1 det M,

From the second forms, it is clear that (30b) is a direct consequence of (27)
and (29b).

8. Potential Difficulties through Section II.0 

I find two. First, for good reason, Eul and Schiek describe their two-
ports using transmission parameters. (They have used one of several prevalent
definitions of these parameters.) But the transmission matrix containing
these parameters for a two-port does not exist -- has infinite elements --
unless the two-port has some transmission both ways. I find that if the
through transmission is cut back to zero in a limiting process, both the trace
and the determinant of the matrix survive in the limit, but matrix elements do
not. The DUT presumably has some transmission both ways, so its transmission
matrix should not create any difficulties, but when certain simple calibration
standards -- open, short, or match at each port with no through transmission --
are used, what transmission matrix should be used in (12) to describe the
standards? Eul and Schiek have been careful to answer these questions. In
Section II.E they discuss calibration procedures that use a third standard
without transmission and in II.F, procedures in which only the first standard
has transmission.
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Second, equation (17). If the eigenvalues of (16) are distinct, the
eigenvectors appearing in the columns of X and Y are independent. This allows
X and Y to be inverted and the analysis to proceed. But if the two
eigenvalues are identical and the original matrix -- P or Q -- is not
Hermitian, then its eigenvectors are not independent and the invertible X and
Y of (17) do not exist. Doesn't this block further analysis in these special
cases? Fortunately not! The work of Eul and Schiek does not require that P
and Q be similar to the same diagonal matrix as in (17), only that they be
similar to the same matrix. In the present special cases with both
eigenvalues equal to A, the Jordan canonical form

j .41 11
0 A

is a good candidate. As a good book on linear algebra will explain, every
matrix is similar -- as in (17) -- to a matrix in Jordan canonical form. I
had better say that the diagonal matrix A of (16) is also a Jordan canonical
form. The 1 in J above conveys the fact that the eigenvectors of P and Q are
not independent.
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