NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

Electronics Division Technical Note No. 148

Title: PROGRAMS FOR ANALYSIS OF WIRE GRID BEAM-SPLITTERS AND THE FOLDED MACH-ZEHNDER DIPLEXER

Author(s): A. R. Kerr

Date: October 20, 1988

Distribution:

<u>GB</u>		<u>CV</u>		TUC	<u>VIA</u>
GB	Library	ER Library		Library Downtown	VLA Library
R.	Norrod	IR Library		Library Mountain	P. Napier
R.	Weimer	M. Balister		J. Payne	J. Campbell
D.	Schiebel	S. Weinreb		R. Freund	W. Brundage
Ε.	Childers	C. Burgess		J. Lamb	
R.	Lacasse	SK. Pan		D. Emerson	
C.	Brockway	A. R. Kerr		P. Jewell	
J.	Coe	Nancyjane Bai	ley	J. Cochran	
W.	Albing	L. D'Addario		A. Perfetto	
S.	White	N. Horner			
G.	Behrens	S. Srikanth			
R.	Fisher				
F.	Crews				
	2 <u></u>				

B. Peery

PROGRAMS FOR ANALYSIS OF WIRE GRID BEAM-SPLITTERS AND THE FOLDED MACH-ZEHNDER DIPLEXER

A. R. Kerr 20 October 1988

Grids of uniformly spaced wires are widely used at millimeter wavelengths as beam-splitters and polarizers. Frequency diplexers based on wire grids are used in millimeter wave receivers for introducing the LO and filtering out the unwanted image frequency. Such diplexers are the Martin-Puplett interferometer [1] which uses polarizing grids, and the folded Mach-Zehnder interferometer [2] which uses half-reflecting grids. This report describes four programs:

GRID001 computes the frequency response of an <u>inductive</u> wire grid, in which the incident E-field is parallel to the grid wires and the plane of incidence is perpendicular to the grid wires.

GRID002 computes the frequency response of a <u>capacitive</u> wire grid, in which the incident E-field is perpendicular to the grid wires but parallel to the plane of the grid.

DPLXR004 computes the frequency response of a folded Mach-Zehnder diplexer using inductive wire grids.

DPLXR005 computes the through-path and side-path transmission maxima and minima for a folded Mach-Zehnder diplexer using inductive wire grids.

The programs are written as Lotus 1-2-3 worksheets, and should operate on any PC equipped with Lotus 1-2-3 Release 2 (or later).

Theory

The programs are based on the formulas for arrays of straight wires in free space given by Marcuvitz [ref. 3, secs. 5.20 and 5.21].

Marcuvitz's formulas for the inductive grid assume a plane wave with an angle of incidence θ , polarized with the E-field parallel to the wires but perpendicular to the plane of incidence.

Marcuvitz's formulas for the capacitive wire grid are derived from his analysis of a capacitive post in a rectangular waveguide. He only considers the case of normal incidence to the grid, which implies $\lambda_g = \lambda$ (i.e., plane wave propagation down the waveguide). By using $\lambda_g = \lambda/\cos \theta$ his formulas can be extended to the case in which the angle of incidence is θ and the E-field is perpendicular to the grid wires but parallel to the plane of the grid.

All grids are assumed lossless.

The theory of the folded Mach-Zehnder diplexer is given in Appendix 1.

Operation of the Programs

The programs operate as standard 1-2-3 worksheets. With 1-2-3 running, type /fr and respond with the name of the program (e.g., A:\GRID001). Enter the desired input parameters in the appropriate cells, following each entry with the return key. To start the program, invoke macro \A by typing Alt-A. To view results displayed graphically, type /GNU and select the desired graph format name.

GRIDO01 -- Inductive Wire Grid

The equivalent circuit elements in Fig. 1 are evaluated using eqns. 1(a) and 2(a) in section 5.21 of Marcuvitz:

In the program, the sum is taken for $-20 \le m \le 20$, which gives an accuracy of four significant figures in x_a and x_b for the cases tested.

Restrictions

To avoid higher order diffracted beams, it is necessary that $a < \lambda/(1 + \sin \theta)$. The expressions for x_a and x_b are within 10% for $d/a \le 0.2$.

Example 1

Figs. 2 and 3 show results from GRID001 for a 100 GHz half-reflecting grid of 0.002" dia. wires with 24 wires/inch and an angle of incidence $\theta = 45^{\circ}$. The input quantities are indicated by boxes in Fig. 2. The following quantities are calculated:

wl	λ the free-space wavelength (mm)
x _a , x _b	normalized impedances in Fig. 1
$ \rho ^2$	power reflection coefficient
$ \tau ^2$	power transmission coefficient
RL	reflected path loss, dB
TL	through path loss, dB

Example 2

Fig. 4 shows results from GRID001 for a 300 GHz polarizing grid of 0.001" dia. wires with 250 wires/inch and an angle of incidence of 45°.

GRID002 -- Capacitive Wire Grid

Marcuvitz's analysis of a capacitive grid (his section 5.20) is based on the analogy to a capacitive post in a rectangular waveguide. Considering the waveguide walls as perfect reflectors, the waveguide-mounted capacitive post is equivalent to a free-space capacitive grid. Marcuvitz considers only the case of normal incidence ($\theta = 0$). However, by choosing the guide wavelength $\lambda_g = \lambda/\cos \theta$, the angles of incidence of the two plane waves in the waveguide (which constitute the TE₁₀ mode) are $\pm \theta$, and the waveguide model is analogous to a free-space capacitive grid with an angle of incidence equal to θ . The equivalent circuit elements in Fig. 5 are evaluated using equations 1(a) and 2(a) in section 5.13 of Marcuvitz, with $\lambda_g = \lambda/\cos \theta$:

$$b_a = \frac{2b}{\lambda_g} \left(\frac{\pi d}{2b}\right)^2 \frac{1}{A_2}$$
 M5.13/1(a)

$$b_{b} = \frac{\lambda_{g}}{2b} \left(\frac{2b}{\pi d}\right)^{2} A_{1} - \frac{b}{\lambda_{g}} \left(\frac{\pi d}{2b}\right)^{2} \frac{1}{A_{2}}$$
 M5.13/2(a)

where

ere $A_1 = 1 + \frac{1}{2} \left(\frac{\pi d}{\lambda_g}\right)^2 \left[\ln\left(\frac{b}{\pi d}\right) + \frac{3}{4}\right] + \left(\frac{\pi d}{\lambda_g}\right)^2 S_1$

with
$$S_1 = \sum_{m=2,4,\ldots}^{\infty} \left[\frac{1}{\sqrt{m^2 - \left(\frac{2b}{\lambda_g}\right)^2}} - \frac{1}{m} \right],$$

and

 $A_{2} = 1 + \frac{1}{2} \left(\frac{\pi d}{\lambda_{g}} \right)^{2} \left[\frac{11}{4} - \ln \left(\frac{b}{\pi d} \right) \right] + \frac{1}{6} \left(\frac{\pi d}{2b} \right)^{2} - 2 \left(\frac{\pi d}{2b} \right)^{2} S_{2}$ $S_{2} = \sum_{m=2}^{\infty} \left[m - \frac{1}{2m} \left(\frac{2b}{\lambda_{g}} \right)^{2} - \sqrt{m^{2} - \left(\frac{2b}{\lambda_{g}} \right)^{2}} \right].$

with

In the program, S_1 and S_2 are taken for $m = 2, 4, \ldots, 40$, which appears to give four significant figure accuracy for b_a and b_b in the cases tested.

Restrictions

The equivalent circuit of Fig. 5 is valid for $a < \lambda/(2 \cos \theta)$. The expressions for b_a and b_b are within 10% for $d/a \le 0.3$ and (a cos $\theta/\lambda < 0.2$).

Example 3

Fig. 6 shows results from GRID002 for the 100 GHz half-reflecting grid used in Example 1 but oriented here as a capacitive grid. The grid has 24 wires/inch using 2 mil wire and the angle of incidence $\theta = 45^{\circ}$. The input quantities are indicated by boxes in Fig. 6. The following quantities are calculated:

gd wl	λ_{g} the equivalent guide wavelength (mm)
b _a , b _b	normalized admittances in Fig. 5
$ \rho ^2$	power reflection coefficient
$ \tau ^2$	power transmission coefficient
RL	reflected path loss, dB
TL	through path loss, dB

Example 4

Fig. 7 shows results from GRID002 for the 300 GHz polarizing grid used in Example 2 but oriented here as a capacitive grid. The grid has 250 wires/inch using 1 mil wire and the angle of incidence $\theta = 45^{\circ}$.

DPLXR004 -- Frequency Response of Folded Mach-Zehnder Diplexer

The folded Mach-Zehnder diplexer, attributed to Kislyakov, has been widely used in millimeter wavelength receivers. Payne and Wordeman [2] describe such a diplexer with wire grid beam-splitters which they used as a tunable LO diplexer.

The present program is based on GRID001 for inductive wire grids. The diplexer theory outlined in Appendix 1 gives the power transmission coefficients in the through- and side-paths:

$$P_{\text{through}} = (t^2 - r^2 \cos \Delta \phi)^2 + r^4 \sin^2 \Delta \phi$$

 $P_{\text{side}} = r^2 t^2 [(1 + \cos \Delta \phi)^2 + \sin^2 \Delta \phi].$

Here, r and t are the magnitudes of ρ and τ , the (amplitude) reflection and transmission coefficients of the individual grids. $\Delta \phi$ is the electrical path (phase) difference between the two arms of the interferometer.

Restrictions

The restrictions on the grid dimensions are the same as for program GRID001 above. In addition, it is assumed that beam divergence through the two paths of the interferometer will not contribute significantly to the loss.

Example 5

Figs. 8-10 show results from DPLXR004 for a 230 GHz diplexer using 0.0015" dia. wires spaced 48 wires/inch. The following quantities are calculated:

wl	λ the free-space wavelength (mm)
x _a , x _b	normalized impedances in Fig. 1
$\left \rho\right ^{2}$	grid power reflection coefficient
$ \tau ^2$	grid power transmission coefficient
P _{th}	power transmission coeff., through path, dB
P _{sd}	power transmission coeff., side path, dB.

Near 230 GHz, where the grids divide the power almost equally, the insertion loss is very small in both through- and channels. However, by 270 GHz the side-channel insertion loss is 0.4 dB, while the maximum attenuation in the through-channel is ~ 10 dB.

DPLXR005 -- Transmission Maxima & Minima of Folded Mach-Zehnder Diplexer

In designing inductive diplexer grids to cover a particular frequency range, it is useful to know the transmission maxima and minima in the throughand side-channels. From the equations in Appendix 1 it is clear that:

 $P_{\text{through}}\big|_{\text{max}} = 1$ $P_{\text{through}}\big|_{\text{min}} = (t^2 - r^2)^2$ $P_{\text{side}}\big|_{\text{max}} = 4r^2t^2$ $P_{\text{side}}\big|_{\text{min}} = 0$

These quantities are the maxima and minima obtainable at the given frequency by appropriately adjusting the grid-to-mirror vertex spacing.

Restrictions

The restrictions on the grid dimensions are the same as for program GRID001. In addition, it is assumed that beam divergence through the two paths of the interferometer will not contribute significantly to the loss.

Example 6

Figs. 11 and 12 show results from DPLXR005 for the variation over the range 200-300 GHz of the maximum and minimum loss in the through- and sidechannels for a 250 GHz diplexer. The inductive grids use 0.001" (Fig. 11) and 0.0015" (Fig. 12) dia. wire with spacing chosen to give equal power division at 250 GHz. The following quantities are calculated:

> wl λ -- the free-space wavelength (mm) x_a, x_b normalized impedances in Fig. 1 $|\rho|^2$ grid power reflection coefficient $|\tau|^2$ grid power transmission coefficient $P_{th}|_{max}$ max. power transmission coeff., through path, dB $P_{th}|_{min}$ min. power transmission coeff., through path, dB $P_{sd}|_{max}$ max. power transmission coeff., side path, dB $P_{sd}|_{min}$ min. power transmission coeff., side path, dB.

APPENDIX 1

Theory of the Folded Mach-Zehnder Diplexer:

The diplexer is shown schematically in Fig. A-1. The incident beam is split at Il into components A and B. These components are split again at I2. The resulting "through" beam consists of compoments Al and B2 and the resulting "side" beam consists of components A2 and B1. The path difference 2ℓ between beams A and B gives a phase difference $\Delta \phi = 2\pi (2\ell/\lambda)$.

The splitting of a beam at a lossless grid is depicted in Fig. A-2. The currents in the grid generate waves which are superimposed on the (unperturbed) incident wave. In the direction of the reflected beam the grid radiates a wave V_r , and in the direction of the transmitted wave it radiates an identical wave V_r which adds to the incident beam to give a transmitted wave $V_t = V_i + V_r$. These phasors are depicted in Fig. A-3. Conservation of energy requires $V_i^2 = V_r^2 + V_t^2$, which implies that V_t and V_r are in quadrature. Relative to the incident wave, the phases of the transmitted and reflected waves are ϕ_t and $\phi_r = \phi_t + \pi/2$. The voltage transmission and reflection coefficients of the grid can be written

= t exp{
$$j\phi_t$$
}

and

 $\rho = r \exp\{j\phi_r\} = r \exp\{j(\phi_t + \pi/2)\}.$

From Fig. A-2 it is apparent that $t = \cos \phi_t$ and $r = \sin \phi_t$.

For the whole diplexer shown in Fig. A-1, considering the "through" path, and referring phases to the input wave at point I2 in the absence of the diplexer,

and

and

B2 =
$$t^2 \exp\{j2\phi_t\}$$

A1 = $r^2 \exp\{j(2\phi_t + \pi)\} \exp\{-j\Delta\phi\}$

It follows that the "through" path power transmission coefficient

$$P_{through} = |B2 + A1|^2 = (t^2 - r^2 \cos \Delta \phi)^2 + r^4 \sin^2 \Delta \phi$$

For the "side" path,

$$B1 = rt \exp\{j(2\phi_{t} + \pi/2)\}$$

A2 = rt exp{ $j(2\phi_t + \pi/2)$ } exp{ $-j\Delta\phi$ },

from which the "side" path power transmission coefficient

 $P_{side} = |B1 + A2|^2 = r^2 t^2 [(1 + \cos \Delta \phi)^2 + \sin^2 \Delta \phi].$

REFERENCES

- D. H. Martin and E. Puplet, "Polarized Interferometric Spectrometry for the Millimeter and Submillimeter Spectrum," <u>Infrared Physics</u>, vol. 10, pp. 105-109, 1969.
- [2] J. M. Payne and M. R. Wordeman, "Quasi-Optical Diplexer for Millimeter Wavelengths," <u>Rev. Sci. Instrum.</u>, vol. 49, no. 12, pp. 1741-1743, Dec. 1978.
- [3] N. Marcuvitz, Editor, "Waveguide Handbook," MIT Rad. Lab. Series, vol. 10, New York: McGraw-Hill, 1951.

Fig. 2 Example 1. Results from GRID001 for a 100 GHz half-reflecting inductive grid of 0.002" dia. wires with 24 wires/inch and an angle of incidence $\theta = 45^{\circ}$.

GRID001.WK1/GRIDLIN.PIC

Fig. 3 Example 1. Graph of results.

GRIDOO1.WK1 10 Oct 88 Inductive grid of parallel wires at angle theta to incident wave. Ref: Marcuvitz, p. 286 & my notes of 14 Mar 76.

0.001 inches = 0.025 ## pi = 3.141592 Wire dia. d = 0.004 inches = TPI = 250.00 Spacing a = 0.102 mm 45 degrees Theta th = $\cos = 0.707106$ sin = 0.70710610 GHz fa = 300 GHz fb = 1 300.01 GHz Df =f XS xc sqrt fn sigma n Ø 0.072 0.072 310.000 21 -20 19.928 0.000 0.01265 \A {goto}F0~{calc} ١F {let sigma,0} {for n, 1, 20, 1, \C} {for f, fa, fb, df, \B} {calc} /rvf**{right 2} ۱B ۱C {let m,n){recalc d11..g11} {recalc a26..e130} {let sigma, sigma+fn} /rv^{*}xs^{*}{right} {let m,-n}{recalc d11..g11} /rv~xc~{recalc fii..gii} {let sigma, sigma+fn} {\F}^{right}/rvsigma^* {return} {recalc a26..e130} {down}{left 4} {return} f GHz Irhol^2 Itaul^2 RL dB wl mm a*sin/wl a*cos/wl xb SUM xa

300.000 0.999 0.072 0.072 0.01265 0.0183 0.0443 0.999 0.001 0.01 28.75

TL dB

Fig. 4 Example 2. Results from GRID001 for a 300 GHz polarizing grid of 0.001" dia. wires with 250 wires/inch at an angle of incidence of 45°.

Fig. 6 Example 3. Results from GRID002 for the 100 GHz half-reflecting grid used in Example 1 but oriented here as a capacitive grid. The grid has 24 wires/inch using 2 mil wire with an angle of incidence $\theta = 45^{\circ}$.

1.0017

1.0018

0.0033

0.0034

307.30

294.50

1.0030

1.0030

115.000

120.000

3.687

3.533

2.6418 2.62E-02 2.11E-03

2.6418 2.86E-02 2.52E-03

1.0000

1.0000

0.0000

0.0000

-0.00

-0.00

-46.23

-45.86

GRID002.WK1 10 Oct 88 Capacitive grid of parallel wires at angle theta to incident wave. Ref: My notes of 4 Oct 88.

Wire dia Spacing Theta fa =	d = b = th = 300 f	0.001 i 0.004 i 45 d	nches = nches = egrees fb =	0.025 0.102 cos = 300.01	nn nn 0. 707106 GHz	pi = TPI = sin = Df =	3. 141592 250. 00 0. 707106 10 GHz	
f	lg	11	sqrt	fnA	fnB	sigmal	sigma2	
310.000	1.368	42	42.000	1.49E-07	8.22E-10	1.56E-03	8.04E-06	
\A	{goto}F0~{	[calc}		\F	{let sign	ai,0Xle	: sigma2,0}	
	{for f, fa,	fb,df,\B}			{for m, 2,	40, 2, \C}		
	{calc}							
\B	/rvf ~~{ rec	calc bii}		\C	{recalc (111.f11}		
	{\F}				{let sign	nal,sigma	l+fnA}	
	{right 3}	/rvsigmal~	~		{let sig	a2,sigmat	2+fnB}	

{right 3}/rvsigma1~~ {right}/rvsigma2~~ {down}{left 4} {return}

f 6Hz	gd wl	AAA	sumi	sum2	AA	AB	ba	bb	ltau1^2	Irhol^2	TL dB	RL dB
	_				aa	ab	ba	bb				
300.000	1.413	0.9916 1	.56E-03 8	04E-06	1.0017	1.0297	0.0221	45.17	0.9989	0.0011	-0.00	-29.58

{return}

Fig. 7 Example 4. Results from GRID002 for the 300 GHz polarizing grid used in Example 2 but oriented here as a capacitive grid. The grid has 250 wires/inch using 1 mil wire with an angle of incidence $\theta = 45^{\circ}$.

DPLXR004.WK1 10 Oct 88 Folded Mach-Zehnder diplexer with inductive wire grids. Based on program GRID001.WK1 of 29 Sep 88. Ref: My notes of ~29 Sep 88.

Wire dia Wire spa Theta Vertex s fa =	. d = cing a = th = pcng 1 = [229]	0.0015 in 0.02083 in 45 dd 2.8346 in 6Hz fl	nches = nches = egrees nches = b =	0.038 0.529 cos = 72.000 231.51	1888 900 0.707106 1990 6Hz	pi = TPI = sin = Df =	3. 141592 48. 000 0. 707106	Hz
f 231.600	n 21	■ -20	xs 0.289	хс 0.289	sqrt 19. 707	fn 0.000	sig m a 0.30416	
\A	{goto}F0^ {for f,fa {calc}	'{calc} h, fb, df, \B}		\F	{let sigm {for n,1,	a,0}{reca 20,1,\C}	ilc hii}	
\B	/rvf~~{ri {recalc a /rv~xs~{r /rv~xc~{r {\F}~{rig {recalc a {down}{le	ght 2} 30e130} sight} secalc d13 ht}/rvsigma 30e130} eft 4}~	.g13} a~~	νς	<pre>{let m,n} {let sigm {let m,-n {let sigm {let sigm {return}</pre>	{recalc c a,sigma+f }{recalc a,sigma+f	13g13} n}(recalc c13g13} n}(recalc	h11} h11}

{return} f GHz wl mm a*sin/wl a*cos/wl Irhol^2 Itaul^2 RL dB D(phi) Pth dB Psd dB SUM xa xb TL dB tt rr dp 229.000 1.309 0.286 0.286 0.29393 0.5088 0.0146 0.484 0.516 2.87 -28.30 -0.01 3.15 691.11 229.100 1.309 0.286 0.286 0.29433 0.5092 0.0146 0.484 0.516 3.16 2.87 691.41 -17.48 -0.08 0.286 229,200 1.308 0.286 0.29473 0.5095 0.0146 0.483 0.517 3.16 2.87 691.71 -11.09 -0.35 229.300 1.307 0.286 0.286 0.29514 0.5098 0.0146 0.483 0.517 3.16 2.86 692.01 -7.54 -0.84 229.400 1.307 0.286 0.286 0.29554 0.5102 0.0146 0.483 0.517 3.16 2.86 692.32 -1.57 -5.18 0.286 229.500 1.306 0.286 0.29594 0.5105 0.0147 0.482 0.518 3.17 2.86 692.62 -3.48 -2.59 1.306 0.287 229.600 0.287 0.29635 0.5109 0.482 2.86 692.92 0.0147 0.518 3.17 -2.23 -3.97 1.305 0.287 0.287 0.29675 229.700 0.5112 0.0147 0.481 0.519 3.17 2.85 693.22 -1.31 -5.85 229.800 1.305 0.287 0.287 0.29716 0.5115 0.0147 0.481 0.519 3.18 2.85 693.52 -8.52 -0.66 1.304 0.287 0.287 -0.24 229.900 0.29757 0.5119 0.0147 0.481 0.519 3.18 2.85 693.82 -12.71 230.000 1.303 0.287 0.287 0.29797 0.5122 0.0147 0.480 0.520 2.84 694.13 3.18 -0.03 -21.66 1.303 0.287 230.100 0.287 0.29838 0.5126 0.0147 0.480 0.520 3.19 2.84 694.43 -0.02 -23.35 230.200 1.302 0.287 0.287 0.29879 0.5129 0.0147 0.480 0.520 3.19 2.84 694.73 -0.21 -13.27 230.300 1.302 0.287 0.287 0.29920 0.5132 0.0147 0.479 0.521 3.19 2.84 695.03 -0.61 -8.84 1.301 0.288 0.288 0.29961 230.400 0.5136 2.83 695.33 0.0147 0.479 0.521 3.20 -1.23 -6.07 1.301 0.288 0.288 0.30002 230.500 0.5139 0.0147 0.479 0.521 3.20 2.83 695.64 -2.12 -4.13 230.600 1.300 0.288 0.288 0.30043 0.5143 695.94 0.0147 0.478 0.522 3.20 2.83 -3.34 -2.71 0.288 0.30084 230.700 1.300 0.288 0.5146 0.478 0.522 0.0147 3.20 2.82 696.24 -4.98 -1.66 1.299 0.288 0.288 0.30125 230.800 0.5149 0.0147 0.478 0.522 3.21 2.82 696.54 -7.26 -0.90 0.288 230.900 1.298 0.288 0.30167 0.5153 0.0147 0.477 0.523 3.21 2.82 696.84 -10.62 -0.39 231.000 1.298 0.288 0.288 0.30208 0.5156 0.0148 0.477 0.523 3.21 2.82 697.14 -16.42 -0.10 1.297 0.288 0.288 0.30250 231.100 0.5160 0.0148 0.477 0.523 3.22 2.81 697.45 -26.57 -0.01 0.289 0.289 231.200 1.297 0.30291 0.5163 0.0148 0.476 0.524 3.22 2.81 697.75 -15.74 -0.12 0.289 0.289 0.30333 231.300 1.296 0.5167 0.0148 0.476 0.524 3.22 2.81 698.05 -10.27 -0.43 0.289 0.289 0.30374 231.400 1.296 0.5170 0.0148 0.476 0.524 3.23 2.80 698.35 -7.03 -0.96 1.295 0.289 0.289 0.30416 231.500 0.5173 0.0148 0.475 0.525 3.23 2.80 698.65 -4.82 -1.74

•

Fig. 8 Example 5. Results from DPLXR004 for a 230 GHz diplexer using 0.0015" dia. wires spaced 48 wires/inch.

Fig. 10 Example 5. Graph of results near 270 GHz.

						1		,		· ·	,	•
, I , I	· .	1 : .				1	1 ¹	i.			t	
				: .	:	1					1	ł
		-					. 1				÷.	; 1
	1974			47 D-L 00	1							
Min. los	.WKI s and max.	isolatio	n of fold	13 UCT 88 ed Mach-Z	ehnder dic	olexer wi	th induct	ive wire	grids.			
Based on	program G	RIDOO1.WK	1 of 29 S	ep 88.	•				-			
Ref: My	notes of '	~29 Sep 8	B.									
Wire dia	. d =	0,0015	inches =	0.038	eten	pi =	3.141592					
Wire spa Theta	cing a = th =	0.02083	inches = denrees	0.529	NM 0.707105	TPI =	48.000 0.707106					
fa =	[200]	GHz	<u>-</u> ,	300.01	GHz	Df =	50	GHz				
				<u></u>								
f 350.000	n 21	₩ -20	xs 0.374	хс 0.374	sqrt 19.618	fn 0.000	sigma 0.95894					
10	{	/malal		\E	flat cime	. 0.1/	1- 6113					
	{for f, fa	, fb, df, \B	}	W	{for n, 1, 2	20, 1, \C}						
	{cale}											
\B	/rvf**{ri	ght 2}		\C	{let m,nH	irecalc c	13 g13}					
	{recalc a	30e130}			{let sigma	n,sigma+f	n}{recalc	h11}				
	/rv*x5*{r /rv*xc*{ri	ight} ecalc d13			{let m,-n} {let sioma	Krecalc .sioma+f	cl3gl3} n}{recalc	h11}				
					ter argme	.,						
	(\F} \rig	ht}/rvsig	Na 🔨		{return}							
	{recalc a	ht}/rvsig 30e130} # 41~	Na 🔨		{return}							
	<pre>{recalc a {down}{le {return}</pre>	ht}/rvsig 30e130} ft 4}~	na 🔨		{return}							
f GHz	<pre>{\F} {rig {recalc a {down}{le {return} wl mm</pre>	ht}/rvsig 30e130} ft 4}~ a*sin/wl	a*cos/wl	SUM	{return} xa	хb	Irho1^2	ltaul^2	Pth max	Pth min	Psd max	Psd min
f GHz	<pre>(\F} -{rig (recalc a {down}{le {return} wl mm</pre>	ht}/rvsig 30e130} ft 4}~ a*sin/wl	a*cos/wl	SUM	{return}	xb	Irhol^2 rr	Itaul^2 tt	Pth max dB	Pth min dB	Psd max dB	Psd min dB
f GHz 200.000 250.000	<pre>(\F} {rig {recalc a {down}{le {return} wl mm 1.499 1.199</pre>	ht;/rvsig 30e130; ft 4;~ a*sin/wl 0.250 0.312	a*cos/wl 0.250 0.312	5um 0.19856 0.39440	{return} xa 0.4206 0.5868	xb 0.0128 0.0150	Irhol^2 rr 0.580 0.412	ltaul^2 tt 0.420 0.588	Pth max dB 0.00 0.00	Pth min dB -15.87 -15.04	P5d max dB 0.11 -0.14	Psd min dB -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F} -{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	sum 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156</pre>	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	Psd max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F} -{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	sum 0. 19856 0. 39440 0. 95894	{return} xa 0.4206 0.5868 0.9156	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	Psd max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F} -{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	ht;/rvsig 30e130; ft 4;~ a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	5um 0. 19856 0. 39440 0. 95894	{return} xa 0.4206 0.5868 0.9156	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	ltaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	P5d max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F} -{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	5um 0. 19856 0. 39440 0. 95894	{return} xa 0.4206 0.5868 0.9156	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	Psd max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F} -{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	5um 0. 19856 0. 39440 0. 95894	<pre>{return} xa 0.4206 0.5868 0.9156</pre>	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	P5d max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F}-{rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999	ht;/rvsig 30e130; ft 4;~ a*sin/wl 0.250 0.312 0.374	a*cos/wl 0.250 0.312 0.374	5um 0. 19856 0. 39440 0. 95894	<pre>{return} xa 0.4206 0.5868 0.9156</pre>	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	P5d max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000	(\F) {rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999	<pre>ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374 </pre>	a*cos/wl 0.250 0.312 0.374	5um 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156 from DI</pre>	xb 0.0128 0.0160 0.0192	Irhol^2 rr 0.580 0.412 0.217	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00	Pth min dB -15.87 -15.04 -4.96	Psd max dB -0.11 -0.14 -1.67	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000 Fig. rang chan	(\f} {rrig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999 1.199 0.999 0.999 a.999 0.999 0.999	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374 xample 00 GHz a 250	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz d	5um 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minimu grids	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of	ltaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e throw	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	P5d max dB -0.11 -0.14 -1.67 rer the d side vith sp	Psd min dB -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000 Fig. rang chan chos	(\F) {rig {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999 0.999 1.199 0.999 a.999 0.999 a.9	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	5um 0.19856 0.39440 0.95894 esults e maxim iplexen ver div	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minimu grids near 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e thron " dia.	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	P5d max dB -0.11 -0.14 -1.67 ver the side side vith sp	Psd min dB -99.99 -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000 Fig. rang chan chos	((F) - {rigg {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999 0.999 1.199 0.999 0.999 0.999 0.999 0.999 0.999 0.999	ht;/rvsig 30e130; ft 4; 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	5um 0.19856 0.39440 0.95894	<pre>xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minimu grids near 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia: e throu " dia.	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	P5d max dB -0.11 -0.14 -1.67 ver the ad side vith sp	Psd min dB -99.99 -99.99 -99.99 acing
f GHz 200.000 250.000 300.000 Fig. rang chan chos	<pre>(\F) {rigg {recalc a {down}{le {return} wl mm i.499 i.199 0.999 0.999 all E ge 200-3 mels of en to ge </pre>	ht}/rvsig 30e130} ft 4}~ a*sin/wl 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	5um 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minim grids hear 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e thron " dia.	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	Psd max dB -0.11 -0.14 -1.67 rer the d side vith sp	Psd min dB -99.99 -99.99 -99.99 -99.99
f GHz 200.000 250.000 300.000 Fig. rang chan chos	<pre>(\F) {rigg {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999 0.999 11 E se 200-3 mels of en to g</pre>	ht;/rvsig 30e130; ft 4; a*sin/wl 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	5um 0.19856 0.39440 0.95894 esults e maxim iplexen ver div	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minimw grids hear 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e thron " dia.	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	P5d max dB -0.11 -0.14 -1.67 ver the side vith sp	Psd min dB -99.99 -99.99 -99.99 acing
f GHz 200.000 250.000 300.000 Fig. rang chan chos	<pre>(\F) {rigg {recalc a {down}{le {return} wl mm i.499 i.199 0.999 0.999 i.199 0.999 i.els of en to g</pre>	ht}/rvsig 30e130} ft 4}~ a*sin/wl 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	Sum 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minim grids near 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e throu " dia.	Pth min dB -15.87 -15.04 -4.96	Psd max dB -0.11 -0.14 -1.67 rer the d side vith sp	Psd min dB -99.99 -99.99 -99.99 acing
f GHz 200.000 250.000 300.000 Fig. rang chan chos	<pre>(\F) {rigg {recalc a {down}{le {return} wl mm 1.499 1.199 0.999 0.999 1.199 0.999 0.999 anels of en to g</pre>	ht}/rvsig 30e130} ft 4}~ a*sin/wl 0.250 0.312 0.374 0.374 xample 00 GHz a 250 ive equ	a*cos/wl 0.250 0.312 0.374 6. Re of the GHz di ual pov	5um 0.19856 0.39440 0.95894	<pre>{return} xa 0.4206 0.5868 0.9156 from DI num and c. The vision r</pre>	xb 0.0128 0.0160 0.0192 PLXR00 minimu grids hear 2	Irhol^2 rr 0.580 0.412 0.217 5 showi um loss are of 30 GHz.	Itaul^2 tt 0.420 0.588 0.783	Pth max dB 0.00 0.00 0.00 varia e thron " dia.	Pth min dB -15.87 -15.04 -4.96 tion ov ugh- an wire w	Psd max dB -0.11 -0.14 -1.67 ver the d side vith sp	Psd min dB -99.99 -99.99 -99.99 -99.99

· ·

DPLXR005.WK1 13 Oct 88 Min. loss and max. isolation of folded Mach-Zehnder diplexer with inductive wire grids. Based on program GRID001.WK1 of 29 Sep 88. Ref: My notes of ~29 Sep 88.

Wire dia Wire spa Theta	. d = <u>0</u> cing a = <u>0</u> . th =	02083 in 45 d	nches = nches = egrees	0.038 0.529 cos =	mm mm 0.707106	pi = TPI = sin =	3. 141592 48. 000 0. 707106
fa =	260) GHz	f	b =	270.01	GHz	Df =	<u> </u>
f	n	m	XS	xc	sqrt	fn	sigma
272.000	21	-20	0.337	0.337	19.657	0.000	0.53524
\A	{goto}F0~{ca	lc}		\F	{let sigma	,0}{reca	lc h11}
	{for f, fa, fb {calc}	,df,\B}			{for n, 1, 2	20, 1, \C}	
\B	/rvf~~{right	2}		\C	{let m.n}{	recalc c	13 g13}

/rvf~~{right 2} \C
{recalc a30..e130}
/rv~xs~{right}
/rv~xc~{recalc d13..g13}
{\F}~{right}/rvsigma~~
{recalc a30..e130}
{down}{left 4}~
{return}

{let m,n}{recale c13..g13}
{let sigma,sigma+fn}{recale h11}
{let m,-n}{recale c13..g13}
{let sigma,sigma+fn}{recale h11}
{return}

f GHz	wl mm	a*sin/wl	a*cos/wl	SUM	xa	xb	Irhol^2	Itaul^2	Pth max	Pth min	Psd max	Psd min
							rr	tt	dB	dB	dB	dB
260.000	1.153	0.325	0.325	0.45740	0.6308	0.0166	0.376	0.624	0.00	-12.11	-0.28	-99.99
262.000	1.144	0.327	0.327	0.47162	0.6403	0.0167	0.369	0.631	0.00	-11.62	-0.31	-99.99
264.000	1.136	0.329	0.329	0.48646	0.6500	0.0169	0.362	0.638	0.00	-11.15	-0.35	-99.99
266.000	1.127	0.332	0.332	0.50197	0.6601	0.0170	0.354	0.646	0.00	-10.71	-0.39	-99.99
268.000	1.119	0.334	0.334	0.51822	0.6705	0.0171	0.347	0.653	0.00	-10.28	-0.43	-99.99
270.000	1.110	0.337	0.337	0.53524	0.6812	0.0172	0.339	0.661	0.00	-9.87	-0.47	-99.99
 I., .	1 1 24 - 2									lang san anti-anti-anti-anti-anti-anti-anti-anti-		с +
	al de la composition de la composition de la composition de la com											

Fig. 12 Example 6. Results from DPLXR005 showing the variation over the range 200-300 GHz of the maximum and minimum loss in the through- and sidechannels of a 250 GHz diplexer. The grids are of 0.0015" dia. wire with spacing chosen to give equal power division near 230 GHz.

Fig. A-3 Phasor diagram showing incident, reflected, and transmitted waves at a lossless grid.