Title: CRYOGENIC TESTS OF MMIC AMPLIFIER

Author(s): M. Balister and R. Harris

Date: June 22, 1988
CRYOGENIC TESTS OF MMIC AMPLIFIER

M. Balister and R. Harris

GaAs Monolithic Microwave Integrated Circuits are now commercially available at prices that compete favorably with those of discrete component amplifiers with similar performance. Generally, the MMIC amplifiers have wider bandwidths but poorer noise performance than the discrete component amplifiers. Since these are fabricated on GaAs, we decided to check whether they operated at cryogenic temperatures (20 K).

We had some TI TGA-8300 monolithic 2-18 GHz amplifier chips (see data sheet), one of which was mounted in a box with K-connectors, bypass capacitors, and resistors (see photo).

The attached printout shows the performance of the amplifier at 14 K measured in the test setup used for Neptune/Voyager amplifiers. The noise measurement is accurate; the gain curve is in error because of output line losses. The actual gain is slightly higher than the room temperature value of 6.5 dB.

At the moment, however, this chip offers us no particular advantage other than very wide bandwidth over our current discrete component HEMT amplifier designs. It is encouraging, however, that the first device we tested worked at 14 K. Since so much work is going on in the area of MMIC amplifiers, we should monitor the performance of future commercially available amplifiers.

In order to be useful for radio astronomy LNA use, we need better room temperature/cold noise performance and also lower power consumption. The amplifier tested is a four-stage distributed amplifier and dissipated about 125 mW for 6 dB gain. The non-distributed amplifiers are somewhat better but still appear to have fairly high power dissipations at their normal room temperature operating points.
Texas Instruments TGA8300
Monolithic 2- to 18-GHz Amplifier

Features

- 18-dBm typical output power at 1-dB gain compression
- 6.5-dB gain
- Input and output SWR less than 2:1
- Size: 0.093 x 0.064 x 0.006 inch
- Recessed 1/2-μm gate structure

Description

The Texas Instruments TGA8300 is a GaAs monolithic distributed amplifier designed for use as a very broadband general-purpose gain block. Four 189-μm gate width FETs provide 6.5-dB nominal gain and less than 7-dB noise figure from 2 to 18 GHz. Typical power output is 18 dBm at 1-dB gain compression. Input and output SWRs are less than 2:1.

The TGA8300 is supplied in chip form and is engineered for high-volume automated assembly. All metal surfaces are gold plated to be compatible with thermocompression and thermosonic wire-bonding processes.

Advance Information documents contain information on new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.
Device Layout

Units: inches
Thickness: 0.006 (Ref. only)
- Bonding pad area

Circuit Topology
Absolute Maximum Ratings ($T_A = 25^\circ$C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply voltage</td>
<td>V^+</td>
<td>8.0</td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>Negative supply voltage</td>
<td>V^-</td>
<td>0 to −5.0</td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{DISS}</td>
<td>1.0</td>
<td>watt</td>
<td></td>
</tr>
<tr>
<td>Operating channel temperature</td>
<td>T_{CH}</td>
<td>150°</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>Mounting temperature (30 seconds)</td>
<td>T_{M}</td>
<td>320°</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>−65° to 150°</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Operating channel temperature will directly affect the device MTTF. For maximum life, it is recommended that channel temperature be maintained at the lowest possible level.

Recommended Bias Circuit

![Recommended Bias Circuit Diagram](image)

Close placement of external components is essential to stability.
Typical Output Power at 1-dB Gain Compression

(V⁺ = 6 V, I⁺ = 50% I_DSS, T_A = 25°C)

![Graph showing typical output power at 1-dB gain compression](image)

Typical Small-Signal Gain

(V⁺ = 6 V, I⁺ = 50% I_DSS, T_A = 25°C)

![Graph showing typical small-signal gain](image)
Gate-Drain Breakdown Voltage

\[DG = 0.75 \text{ mA} \]

Typical Noise Figure

\((V^+ = 6 \text{ V}, I^+ = 50\% I_{DSS}, T_A = 25^\circ C) \)

![Noise Figure Curve]

Typical DC Characteristics \((T_A = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Parameter and Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Drain Current</td>
<td>(I_{DSS})</td>
<td>80</td>
<td>190</td>
<td>300</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td>(V_{DS} = 2.5 \text{ V})</td>
<td>(V_{GS} = 0.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinchoff Voltage</td>
<td>(</td>
<td>V_P</td>
<td>)</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>(V_{DS} = 2.5 \text{ V})</td>
<td>(I_{DS} = 500 \mu A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transconductance</td>
<td>(G_M)</td>
<td>90</td>
<td>145</td>
<td>mS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(V_{DS} = 2.5 \text{ V})</td>
<td>(V_{GS} = 0.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>(V_{BGS})</td>
<td>6</td>
<td>V</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{SG} = 0.75 \text{ mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Breakdown Voltage</td>
<td>(V_{SGD})</td>
<td>6</td>
<td>V</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{DG} = 0.75 \text{ mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) DC data measured with four 189-\(\mu \text{m} \) FETs in parallel.
Typical S-Parameters

\((V^+ = 6 \text{ V}, I^+ = 50\% I_{\text{DSS}}, T_A = 25^\circ\text{C})\)

| Frequency (GHz) | \(S_{11}\) MAG | \(S_{11}\) ANG | \(S_{21}\) MAG | \(S_{21}\) ANG | \(S_{12}\) MAG | \(S_{12}\) ANG | \(S_{22}\) MAG | \(S_{22}\) ANG | \(|S_{21}|\) (dB) |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 2.0 | 0.11 | -99 | 1.98 | 159 | 0.02 | 95 | 0.14 | -21 | 5.9 |
| 3.0 | 0.09 | -148 | 2.05 | 124 | 0.03 | 57 | 0.29 | -76 | 6.2 |
| 4.0 | 0.06 | -146 | 2.12 | 94 | 0.04 | 27 | 0.29 | -92 | 6.5 |
| 5.0 | 0.09 | -120 | 2.16 | 64 | 0.04 | -2 | 0.26 | -95 | 6.7 |
| 6.0 | 0.13 | -128 | 2.16 | 37 | 0.05 | -30 | 0.25 | -92 | 6.7 |
| 7.0 | 0.15 | -145 | 2.16 | 9 | 0.06 | -57 | 0.24 | -91 | 6.7 |
| 8.0 | 0.13 | -154 | 2.17 | -17 | 0.07 | -82 | 0.21 | -93 | 6.7 |
| 9.0 | 0.10 | -137 | 2.22 | -45 | 0.08 | -108 | 0.16 | -93 | 6.9 |
| 10.0 | 0.19 | -96 | 2.21 | -73 | 0.09 | -134 | 0.15 | -61 | 6.9 |
| 11.0 | 0.10 | -119 | 2.28 | -102 | 0.10 | -156 | 0.09 | -51 | 7.1 |
| 12.0 | 0.14 | -148 | 2.20 | -129 | 0.11 | -180 | 0.15 | -30 | 6.9 |
| 13.0 | 0.11 | -175 | 2.19 | -157 | 0.11 | 155 | 0.20 | -45 | 6.8 |
| 14.0 | 0.04 | 125 | 2.18 | 175 | 0.11 | 128 | 0.20 | -69 | 6.8 |
| 15.0 | 0.07 | -18 | 2.17 | 145 | 0.11 | 96 | 0.16 | -94 | 6.7 |
| 16.0 | 0.13 | -56 | 2.17 | 114 | 0.12 | 62 | 0.10 | -118 | 6.7 |
| 17.0 | 0.11 | -66 | 2.21 | 82 | 0.14 | 28 | 0.04 | -82 | 6.9 |
| 18.0 | 0.19 | -23 | 2.37 | 41 | 0.18 | -7 | 0.18 | -58 | 7.5 |

NOTE: Reference planes for S-parameter data located at center of device bond pads.

Typical Electrical Characteristics

\((V^+ = 6 \text{ V}, I^+ = 50\% I_{\text{DSS}}, T_A = 25^\circ\text{C})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third-Order Intercept</td>
<td>(I_{P3})</td>
<td>8 GHz</td>
<td>32dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 GHz</td>
<td>28dBm</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 GHz</td>
<td>27dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>Standing-Wave Ratio</td>
<td>SWR</td>
<td>2-18 GHz</td>
<td>1.5:1</td>
<td></td>
</tr>
<tr>
<td>Maximum Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Catalog Device Nomenclature

FETs and MMICs

TGA8300-S C C - X
 1 2 5 6 7 8 9

Where:

(1) The Product type, coded as
 F = Discrete GaAs FET
 A = Monolithic amplifier
 V = Monolithic VCO
 S = Special monolithic function

(2-5) A specific 4-digit number identifying the device, i.e., 8300

(6) Performance screening coded as
 S = Standard
 X = Special

(7) Packaging coded as
 C = Chip form
 P = Standard package
 S = Special package

(8) Reliability screening coded as
 C = Commercial
 M = Military

(9) TI internal procurement code X
For Further Information Contact:

U.S. Marketing
Dallas
Texas Instruments Incorporated
Marketing Manager
Microwave Military Components
P.O. Box 655474, M/S 402
Dallas, Texas 75265
Telephone (214) 995-3043

International Marketing
Bonn
Texas Instruments Deutschland GmbH
In Der Raste 24
5300 Bonn 1,
Federal Republic of Germany
TELEX: Germany 526529 TExID
TERM: EGBO
Telephone 0228/234081

Sales Offices
ALABAMA: Huntsville (205) 837-7530
ARIZONA: Phoenix (602) 995-1007
Phoenix (602) 624-3276
CALIFORNIA: Irvine (714) 660-8187
Sacramento (916) 929-1521
San Diego (619) 278-9651
Santa Clara (408) 280-0000
Torrance (213) 517-7010
Woodland Hills (818) 704-7759
COLORADO: Aurora (303) 368-8000
CONNECTICUT: Wallingford (203) 265-0074
FLORIDA: Ft. Lauderdale (305) 973-8502
Meland (305) 662-4600
Tampa (813) 870-6420
GEORGIA: Norcross (404) 662-7900
ILLINOIS: Arlington Heights (312) 640-2925
INDIANA: Ft. Wayne (219) 424-5174
Indianapolis (317) 248-6555
IOWA: Cedar Rapids (319) 395-9550
MARYLAND: Baltimore (301) 994-8600
 MASSACHUSETTS: Wattham (617) 935-9110
MICHIGAN: Farmington Hills (313) 529-1500
Grand Rapids (616) 927-4200
MINNESOTA: Eden Prairie (612) 828-9300
MISSOURI: Kansas City (816) 523-2500
St. Louis (314) 569-7600
NEW JERSEY: Iselin (201) 750-1050
NEW MEXICO: Albuquerque (505) 345-2555
NEW YORK: East Syracuse (315) 463-9291
Endicott (607) 754-3900
Melville (616) 454-6650
Pittsford (716) 385-6770
Poughkeepsie (914) 473-2900
NORTH CAROLINA: Charlotte (704) 327-0930
Raleigh (919) 876-3723
OHIO: Beachwood (216) 464-6100
Dayton (513) 258-3827
OREGON: Beaverton (503) 643-6758
PENNSYLVANIA: Ft. Washington (215) 843-6450
Corapopolis (412) 771-6550
PUERTO RICO: Hato Rey (909) 753-8700
TEXAS: Austin (512) 250-7655
Houston (713) 779-6582
Richmond (214) 688-2092
San Antonio (210) 421-7247
UTAH: Murray (801) 226-7872
VIRGINIA: Fairfax (703) 849-1400
WASHINGTON: Redmond (206) 981-3080
WISCONSIN: Brookfield (414) 785-7140
CANADA: Nepean, Ontario (613) 726-1970
Richmond Hill, Ontario (416) 894-8318
St. Laurent, Quebec (514) 332-8392

Customer Response Center
TOLL FREE: (800) 232-3200 Ext. 1502
OUTSIDE USA: (214) 995-6811 Ext. 1502
(8:00 a.m. — 5:00 p.m. CST)

Printed in U.S.A. 01-AW-S-87
GMGS007
1) G0T01800
16:26.3 06/03/88 TAV=5866884.4 TL0=1726 @ 8750 GL=-32.1 GH=0 T=-1000K
-10,-100,-10 -10,-100,-10 -10,-100,-10 -10,-100,-10

1) 14K MEASUREMENT WITH LOWER DRAIN CURRENT
16:32.4 06/03/88 TAV=164.2 TL0=159 @ 8000 GL=5.4 GH=5.6 T=-1000K
-8.15,-100,-10 -10,-100,-10 -10,-100,-10 -10,-100,-10

16:36.7 06/03/88 ZERO=11.6 ADB=10 TF=16.8 -NDB=5.4
F, GHz NOISE GAIN, DB F, GHz NOISE GAIN, DB
7.900 159.5 5.6 8.000 159.0 5.5 8.100 160.3 5.5 8.200 161.9 5.5 8.300 161.4 5.5 8.400 163.1 5.6 8.500 163.5 5.5 8.600 168.0 5.5 8.700 170.9 5.5 8.800 173.6 5.4 8.900 174.9 5.3 9.000 177.9 5.3

\[V_{dd} \approx 5 \text{V} \]

\[I \approx 25 \text{mA} \]