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Correlation Function to Power Spectrum Transformations

S. Weinreb

I. Introduction

The true power spectrum, P(f), is exactly and unambiguously given as the
Fourier transform of the true autocorrelation function, R(t), which must be known
for all 1, ~ » £ 1 £ =. However, when we step from the mathematical world to the
real world the relaticn between N samples of an approximate spectrum, P¥(KAf),

0

IA

k = N-1, and N sazples of an autocorrelation function, R(nAt), 0 £ n < N-1,
becomes somewhat arbitrary and ambiguous. (In further notation the *,Af and At
will be dropped to giwe P(k) and R(n) as the spectral estimate and sampled
autorcorrelation function.) One transformation gives one approximation to P(k)
and a different transformation gives a different approximation; unless a criteria

of "best" is chosen, tThe choice is arbitrary.

II. Transform Criteria

The criteria which will be used here to select an optimum transformation
are the following:

1) As is widely discussed in the literature (see Blackman and Tukey [1],
Weinreb [2], and Rabiner and Gold, p. 88 [3]), P(k) is a convolution of P(f) with
an equivalent filter shape function, W(f-kAf). We desire that W be as narrow and
free of spurious lobes as possible. These two criteria conflict and the compromises
are discussed in the literature. A usual procedure is to adopt a narrow W(f) by
uniform weighting of R(n) and deal with spurious lobe reduction in later processing
by combining adjacent spectral points; i.e., a new estimate P'(k) = aP(k-1) +
bP(k) + aP(k+1) is formed where a and b are selected constants.

However, with little effect on the width and lobe suppression, it is possible

to choose the transformation to meet other criteria given below.



2) Imperfections in the sampler tend to produce a large and somewhat
unstable spurious signzl at zero frequency. This results from DC offsets and
leakage of the sampler clock signal or its harmonics into the sampler input. For
this reason, it is hignly desirable to have spectral values P(k) for k # O independent
of the zero frequency signal; i.e., the window function, W(f-kAf), should have a
zero at £ = 0 for all «.

3) A convenient transformation is the Fast-Fourier-Transform, FFT, as
implemented with the Cooley-Tukey algorithm. The most widely available FFT
algorithms are for ND points equal to a power of 2. Digital correlators are
often built to also hzve a power of 2 number of channels. This is somewhat
unfortunate as criteriz 2) is easily met with ND = 2(N-1) where N is the number
of correlator channels; i.e., a correlator with a power of two channels plus one
would be convenient. However, a remedy exists which allows ND = 2N.

L) The sampling theorem applied in the frequency domain determines the
maximum spacing of freguency points, Af = fg/2(N-1), which will preserve all
information in the autocorrelation function which is band limited to 0 £ 1 £
(N-1)/fg where fg = 1/A1 is the sampling frequency. The required maximum angle
argument in the FFT is then 2w(kAfk)(nAt) = 2wkn/2(N-1) = 2wkn/ND. Note that

ND

2N provides sufficiently close frequency points, ND = N does not, and

ND

2(N-1) is the minimum size transform. Also note that only N input data points
are available for a transform having ND > N; the remaining data points can either

be made zero or repeats of the first N points.

III. Definition of Transforms

We will compare 3 possible transform equations in the light of the-above

criteria. The first of these, Py, defined below is the most obvious choice if



criteria 2) is not considered:

P1(k) =2 2§~1 R{n)cos(2wnk/2N) - R(o)
n=o
where k is an integer ranging from 0 to N-1 in all equations. Thus P4(k) + R(o)
is twice the real part of a 2N point DFT of the real function R(n). Since R(n) =
0 for n 2 N, the upper limit in the summation could be N-1, but this would not be

in the form of a standard DFT since the angle argument necessarily contains 2N.

An equivalent reflectad version of this DFT can be written as:

2N-1
P, (k) = ) R'(n)cos(2mwnk/2N)
n=0
where R'(n) = R(n) 0 < n < N-1
R'(n) =0 n=N
R'(n) = R(2%-n) N+1 < n < 2N-1

Another selection of transform is suggested by Blackman and Tukey [1, p. 35]
and is given by
2N-3

Po(k) =2 Y R{n)cos[2mnk/(2N-2)] - R(0o) - R(N-1)coswk
n=0

where the substitution N-1 = m is made in the original notation and the summation
is written in the form of a real part of a 2(N-1) point DFT of the real function
R(n) which is 0 for n > N. This transform meets criteria 2); Pp(k) = 0 for all k
when R(n) is constant with n as is produced by a zero-frequency signal.

A third transform which is a 2N point DFT and meets criteria 2) can be
obtained by adding an (N+1)th point to R(n). This can be done with surprisingly

little deleterious effects (see Figure 1) by defining R(N) = R(N-2) as the extra
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The solid line in the above figure is the true spectrum consisting of a
constant plus a 40% ripple at a frequency having a Fourier component at
R(N-2). The bottom curve with + symbols is the normal DFT, P;(f) and
the top + curve is the modified DFT with an added term, R(N) = R(N-2).
There is surprisingly little difference between the curves. The points
represented with filled squares are weighted versions of the transform
and show large attenuation of the ripple term since it is close to the
resolution limit of the system (i.e., a ripple at R(n) for n 2 N is
totally ignored).



point, and then in arnalogy to P»p,

2N-1
P3(k) =2 ) R(n)cos(2mnk/2N) - R(o) - R(N)costk
n=0

or the equivalent form,
N

P_(k) = 2
3 n

1
Z{n)cos(2wmnk/2N) - R(o) + R(N)cosmk

I~ 01

e}

IV. Transform Properties and Weighting

Some of the procerties of these three transforms are shown in Figure 2.
Since Po requires a c¢ifficult transform, it will be dropped from further discussion.
It is also obvious from Figure 2 that weighting of the transform will be needed
in most cases to reduce spurious lobes. The weighting affects the zero frequency
response.

A unified methcd of describing weighting effects on both Py and P3 can be
obtained by considering a weighting function, w(n) which multiplies R(n) defined

by two constants A znd B, and the equations

w(n) A+ (1 - A)cos(wn/N) 0 £nsN-1

w(N) = B

The values of A and 3 for Py and P3 and uniform, hanning, and Hamming weighting

are given in Table I below:

TABLE I. WEIGHTING FACTORS

Uniform Hanning Hamming
Weight Weight Weight
Normal DFT, Pj
A 0 0.500 0.540
B 0 0 0
Modified DFT, Pg3
A 1 0.500 0.540
B 0 0 0.0800




Fig. 2.

[ah]
y
IN
~~
Fa
Ha
N7
=)
]
~
[y
[3a}
g
g
[y
~
[y
[oa]
~
by
=3
53]
=3
=
=1
=z
(%)
[
e}
1
%)
o=}
o
Z
[ %]
52}

.5F8

a P3(14),P3(15),P3(16) FREQUENCY RESPONSE .5FS

Frequency response produced by the three transforms defined in the text, Pq,
P, and Pz are shown from top to bottom, respectively. The solid line shows
the value of the transform point P (15) for an N = 32 point autocorrelation
function as the frequency of the correlated time function is varied from O

to 1/2 the sampling frequency, fg/2. The outputs of Py(14) and P(16) are also
shown with + and x symbols, respectively. The zero frequency response of

P1(k) is = 1/32 of the peak for all k # 0 while Pp(k) and P3(k) are exactly
zero at zsro frequency for all k # O.
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In this formulation, where R(N-2) is unweighted, R(N) = R(N-2) for all
cases, and the transZorm is defined as for P3 in the previous section. P1 1is
described by the sams equations since R(N) will be multiplied by w(N) = B = 0 and
has no effect. For the case of P3, B is chosen to to give zero response at zero
frequency.

Note that hanning weighting gives zero DC response with the normal transform
and P3 will not give zero DC response unless B = 0; i.e., P3 = P17, in this case.
For Hamming weightinz the value of B which nulls the DC response is 0.0800 as
found by computer irceration for N = 16, 32, and 64. We then note that
B =2A -1 to give z=ro DC response for all three weightings of the modified DFT!
This relation has be=n checked for other values of A.

The response of a transform output point, Py (4), to input sinusoids of
frequencies from zero to fg/2 is shown in Figure 3 for the case of N = 32 and
various transforms. The modified DFT for A = 0.60, 0.65, and 0.70 is shown in
Figure 4.

A listing of ths relevant part of a GWBASIC program used to evaluate transforms

is shown in Figure 5 with arrows on key lines.

V. Conclusions

1) For transform convenience it is desirable to construct correlators with
number of channels, N, equal to one plus a power of 2.

2) The hanning weighting is a good general purpose window for most radio
astronomy observaticns. It gives zero DC response for any N and has very low
spurious lobes.

3) If the 65% increase in equivalent filter half-power width due to hanning
is not tolerable, then the modified DFT, P3, with zero DC response can be used.

L) Funcdtions which give an intermediate trade-off of resolution vs spurious

lobe level are the modified DFT with A = 0.60, 0.65, and 0.70.
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\-H.4 og
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Fig. 4. Response of modified DFT, P3(4), to frequencies from O to
Tg/2 for weighting factors 0.60, 0.65, and 0.70 which gives
increasingly narrow resolution and higher spurious lobe level.
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REM DFTABC 2/21/84

DIM R{128),P{4,128),RWC{128)

LPRINT CHR#$(273;"L668" ;CHR$(27);"E"; :REM LEFT MARGIN AND ELITE
PI1=3.,1413%245%

SCREEN 8,1: CCLER 12,9 :CLS

PRINT " K F P{1,F) Pi2,F)"
VIEW PRINT 2 72 24
REM MAIN PROGRAM*SAAXEXXTXXFARARAERHXXNAEXEXRARAXX XA AL XX R AR A L LR XXX K HEH

Al1)=.851/020=.7C

Ki=4:NP=32 :Fi=%2:F2=.5:JF=128
DF={F2-F1)/JF

FOR J=8 TO JF:~=F1+J=DF

GOSUB 1@@@: RE™ GEN RIN) FOR F
FOR L=1 TO 2 :~&=a81L)

GOSUB 158@: RE™ WEIGHTED DFT

3 NEXT L
3 NEXT J

GOSUB 2888: RE™ PRINT TABLE

INPUT "SELECT ¥=!{,2,0R 3 FOR PLOT OR K=8 TO HALT";K
IF K=8 THEM LIZT S28-788

IF K=1 THENM UB 2268

IF K=2 THEN » 2228

IF K=3 THEN B 2388

GOTO 468

END

REM GENERATE I{(N)> FOR NORMALIZED FREQUENCY F #¥#x%x#x#¥£¥¥#¥%¥4a¥EREXEREHS
B=2%P1%F

FOR N=8 TO MF-I1:R{N)=COS{B#NM) :NEXT
R{NPI=R{NP-22

1697 RETURN

188
1128
1138

REM REFLECT RON) ##fd#fif s fs iR RSN SR X A XA AR E R AR A AN R A R R R R0 AH
RiNP2=0
FOR N=NP+1 T Z#NP-1: RiMI=R{2xNP-N): NEXT

1199 RETURNM

1288
1218

1228

FEM GENERATE =iN) FOR WHITE NOISE #%%%%55 35340 X XX SR BFFF XXX BFBFELFEEES
Rigy=1
FOR N=1 TO NF-1: R{NI)=8: NEXT

1225 RINPI=R{NP-23

1238

1368

RETURN
REM WEIGHT RN IZSEF ¥ ERF 4B XXX P XX XX AN FXERFF XX FAFEF LA S B XX A XX LT RIFHER

1385 B=PI/NP

1318

o~ 1320

1338

FOR N=8 TO NP &
RICND=REND %A+ ¢ 1 -Al) *COS¢ BN )
NEXT

1349 REETURN

1508

REM Z23NP TRANSFORM FOR Pl AND PO #3% 5334353 353X EFFARAXERLXAFLTEXZFRLERRER

1585 GOSUB 1388: RZ< WEIGHT

1518
1528
1538

~3 1548

1558
1548

1578
1588
1585

A=Z2%P L1/ 2#NF3

K=Ki

SUM=08 :AK=A#*K

FOR N=8 TO NF
SUM=SUM+RIW{NG ® 208 (AK#ND
NEXT M

~3» 1575 PIL,J)=2%5UM -RW{B) -RWI{NP)Y#COS{PI#K)

IF L=2 THEN FRINT USING "##.###8 ";K,F,P(1,D,P(2,D
IF POL,J)YPPMAXCL) THEN PMAX(L)=P(L,J)
IF J=JF THEN; FOR JK=8 TO JF:P{L,JKI=P{L,JK)/PMAX(L) :NEXT JK

1592 RETURN

Fig. 5. G3BASIC program used to evaluate transforms.
Printing and plotting subroutines are not shown.
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