
NATIONAL RADIO ASTRONOMY OBSERVATORY

CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT No. 225

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

L. R. D'ADDARIO

JANUARY 1982

NUMBER OF COPIES: 150

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

Table of Contents

Introduction
Memory Organization • • . • • • • •
The Pointer Reset Program . • • • • • • • • • • • •
The LINK Subroutine . • • •
Calling Library Subroutine by Name . .
Library Versions 2.0 and 2.1 • . . • • • • • • • • • • • • • • • •

Figures

Figure 1 Memory Configuration of Apple II Plus with
Binary Library . . . • • . . •

Figure 2 Configuration of Lower Memory (Library Larger
than 3k Bytes) • . . . • • • • •

Tables

Table Contents of Versions 2.0 and 2.1 . • • •

3
3
6
7
9
9

4

4

Appendix A
Appendix B
Appendix C
Appendix D

Appendices

Internal Organization of the Binary Library 13
Listing of "LINK" Subroutine • • . . • 14
Listing of "LIBENT" Program 15
Listing of Logical Operation Subroutines 17

References . • • • • • • • • • . . • 12

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

L. R. D'Addario

I. Introduction

In programming the Apple II Plus computer in Applesoft Basic, it often

happens that some special operation is required which cannot be implemented

within that language, or which is awkward or inefficient to implement. An

expedient solution is to implement the operation as a subroutine written in

another, more appropriate language - usually an assembly language - and to

access it from Basic via the CALL statement or the ampersand (&) command.

In our setup at NRAO, where we have several Apple II Plus computers with

similar peripherals, the same special operations can be expected to be useful

in many programs written by different people. For example, many of our present

programs need routines to control the ADIOS module [1,2]. To avoid duplication

of programming effort, the code for these operations should be written, maintained,

and distributed in a way that is independent of the programs that will use it,

and yet is easily accessible to them. The present report describes a method of

accomplishing this.

II. Memory Organization

Figure 1 shows the suggested organization of the Apple's memory when

binary subroutines are to be called from Applesoft Basic. This plan is based

on the following ideas:

1. The subroutines are placed in the lower part of memory, starting at

$800 = 2048. The starting point of the Basic program, normally $800 also, must

AP9LIE-S07-

--, Pao 6 OM
A4 tI
VA (0/18ut:

(atik)

At, p „Est) F---
9 a. 0:42,11LA

1,16 OW) PAa'r II
io --

1 1-46fzi
SO-i

611AC ?girl)
101

co/E4LAVS

cf:06;*. $FF,

izot-t
WO '11

/••

CD4

1
SYmeskoc

Atit)a. ,,sgo 4. los

I v.) 171-1

AO,. 3 Forr-E.-as

38400 414400

,1 140(Z)05 eurrIRS I /4114*Id‘
Own otjA)

ETC—
L _oft, (0 en r.A)

MCounr Pabai5C
-
Dec 1,40%

1 c

19 Z.

5-1 2.0 ---
 t1400

1042, --- 8 00

L186W LnTh 144Ei

ti,fj tt, wriL 7--
1.4

gitiAaAl L lgeA0 (39
Nay oViALAYS

t.icot cv4C
t441/

SY61tYt UE

Fig. 1. Memory configuration of Apple II Plus with
binary library, with and without protection
of HGR1.

s1 A

(3EN

Fig. 2. Configuration of lower memory if library
becomes larger than 3k bytes and HGR1 is
needed.

-4-

-5-

be moved up enough to make room for the subroutines. An alternative would have

been to place the subroutines in upper memory and to push HIMEM downward. But

since we often want to use high resolution graphics, which requires that any long

Applesoft program be placed above HGRI ($2000-$3FFF), the space $800-$1FFF is

often unused. The total usable memory is then larger with the subroutines in

low memory.

2. All subroutines which are thought to be generally useful - i.e., used

by at least several different main programs - are assembled together in a single

block called the "binary library," starting at $1400 = 5120. Programs which

use any of the library subroutines would normally load the entire library; this

produces no penalty in usable memory space if HGR1 is also needed.

3. The first page of the library ($1400 thru $14FF) is reserved for JMP

instructions to the entry points of the various subroutines in the library.

Normally, a Basic program should CALL the appropriate JMP instruction address

rather than the actual entry point address of a subroutine. This allows the

library to be updated in a way that might require changing the entry point

addresses of some subroutines without requiring changes in any Basic programs

which use the library.

4. The space $800-$13FF is intended for loading subroutines which are not

in the library but which are needed by a particular Basic program. The idea is

to use this space for specialized routines which are needed by only one program

(or at most a few). An exception is the high resolution graphics character

generator, a purchased program [3] which occupies $C00-$FFF and requires data

(a "font") occupying $1000-$13FF. If this program is required, the space for

other routines is reduced to $800-$BFF, which is shared with Text Page 2.

-6-

III. The Pointer Reset Program

As mentioned earlier, the starting point of the Basic program must be

moved upward to make room for the library. This can be accomplished simply by

changing several pointers in the zero page, provided that the Basic program has

not yet been loaded. A short program to do this is included in the initial

versions of the library. The following command will load the library and reset

the pointers so that.subsequently-loaded Basic programs will reside above the

library:

BRUN LIB

where LIB is the name of a binary file containing the library. This routine

returns to the user in immediate mode, with any previously-loaded Basic program

no longer accessible. An alternative is to use the utility program LOMEM [4]

which actually moves a previously-loaded Basic program, and which can be executed

from within the program. One can then

BLOAD LIB

so that the pointer-resetting program is not executed. However, LOMEM

requires the user to specify the destination address, which might require knowing

the length of the library, and the latter is variable.

The following example illustrates the procedure that I recommend. Suppose

that a Basic program called WORK needs some routines from the library and also

needs a special routine stored in a binary file named WORKER. The user stores

the Basic program in a file named WORK.A and creates a text file named WORK

containing these lines:

BRUN LIB

BLOAD WORKER

RUN WORK.A

-7-

Then, whenever he wants to run WORK, he types

EXEC WORK

and all the memory organization is automatically taken care of. Incidently, the

EXEC file can also do various other useful things, such as making sure that the

text window is properly set and that any resident routines required (DOS, PLE, etc.)

are properly connected.

The pointer reset program knows exactly where the library ends and can place

the Basic program immediately afterward, so no space is wasted. However, if

Hires Graphics is to be used, then at least HGR1 ($2000-$3FFF) must also be

protected from the Basic program. Therefore, another version of the library

exists in which the pointer reset program causes Basic to start at $4000 = 16384

rather than at the end of the library. So far, the library does not extend up

to the beginning of HGR1. If it should ever grow beyond that point, we can still

have a version which protects HGR1 by skipping over it, as shown in Figure 2.

IV. The LINK Subroutine

Most useful subroutines require parameters from the calling program and

produce results which must be returned to the calling program. Therefore, it is

important to provide a method of passing data between a Basic program and a called

subroutine. This could be done through POKE's and PEEK's, but that would be

slaw and cumbersome, especially for arrays.

The library includes a program which allows parameters to be passed in a

simpler and more efficient manner. If a list of Basic variables is appended to

the CALL statement, we can use routines within the Applesoft ROM [5] to find the

addresses of these variables in memory. Our subroutine can then obtain the values

of these variables or store results into them.

-8-

A subroutine called from Basic which needs the addresses of passed parameters

should include the instruction

JSR LINK

where LINK is an entry point in the library. Upon return, the addresses of up to

three parameters will be stored on the zero page, starting at $19, in the same

order as in the CALL statement. For example, if Basic executes

CALL SUB,A,B,C

and SUB contains JSR LINK, then upon return from LINK the address of the Basic

variable A will be in $19,$1A; the address of B will be in $1B,$1C; and the address

of C will be in $1D,$1E. LINK also advances the text pointer to the end of the

Basic statement, so that when SUB executes a RTS, the Basic program continues

normally. If the CALL statement lists more than three parameters, the additional

ones are ignored.

The precise syntax of the CALL statement is

CALL <adr>[1<delim><parameter>11

where <delim> is any of the delimeter characters defined on page 33 of the Apple-

*
soft manual, except the colon and either parenthesis ; <parameter> is the name

of a simple variable or an array element; and <adr> is a Basic expression which

evaluates to the entry point address of the subroutine being called. Note that

an array name (without a subscript, as distinguished from an array element)

cannot be used as a parameter because LINK will think it is a simple variable.

Another linking routine, called MLINK, has been written to pass array names

without subscripts, but it will not be discussed here; contact the author if

this interest you.

The delimeters are thus = + - < > / *

-9--

V. Calling Library Subroutine by Name

As mentioned earlier, the first page (255 bytes, actually) of the library

is reserved for JMP instructions to the entry points of the various subroutines.

This allows for 85 such instructions, which we'll call "indirect entry points."

The addresses of these indirect entry points should remain stable through many

revisions of the library. Nevertheless, the user must know at least the indirect

entry address for each subroutine he calls.

To free the Basic program almost completely from the need to know absolute

addresses in the library, a short program has been written which allows library

subroutines to be called by name. The calling syntax is

CALL <libent>"<name>" <parameter>[{<delim><parameter>}]

where <libent> is the address of the LIBENT program, and <name> is the name of

the desired subroutine. For example,

CALL LIB"CMUL"Y(0) = A(0)*B(0)

will execute the complex multiply subroutine. A slightly shorter calling sequence

is obtained if the & command vector has been set to <libent>. Then

&"CMUL"Y(0) = A(0)*B(0)

will have the same effect as the previous example. Notice that, in either

calling syntax, the second quote replaces the first delimeter of the parameter

list.

In timing tests which compared CALL's through LIBENT to CALL's to the indirect

entry points, no measurable difference was seen with a resolution of about 200 psec.

VI. Library Versions 2.0 and 2.1

At this writing, the NRAO binary library contains the subroutines listed in

Table I. The current library is called Version 2.0 or 2.1, according to whether

the Basic program begins immediately after the library or after HGR1.

When the library is loaded, the version number times 10 is stored in

$14FF = 5375. It is intended that this number will be odd for versions in

which HGR1 is protected, and even otherwise. It is also intended that changes

in the fraction part of the version number will indicate a minor revision which

is downward-compatible (that is, all programs which worked with the earlier

version should work with the new one), whereas changes in the integer part

indicate major revisions in which some routines may operate differently or be

deleted. If the library is loaded through an EXEC file as suggested earlier, it

might be useful to include the line

PRINT "LIBVERS = "PEEK(5375)/10

to be sure the user knows which version he got.

TABLE I: Contents of Versions 2.0 and 2.1

PROGRAM NAME INDIRECT ENTRY NOTES

Dec Hex

PTRSET

LINK 5123 1403

ADIOS 5126 1406

ADOUT 5129 1409

AND16 5132 140C

0R16 5135 140F

XOR16 5138 1412

CADD 5141 1415

CMUL 5144 1418

CDIV 5147 141B

POLAR 5150 141E

RECT 5153 1421

ADD2X2 5159 1427

SUB2X2 5162 142A

MUL2X2 5165 142D

INV2X2 5168 1430

LIBENT 5171 1433

5120 1400 Resets pointers for Applesoft;

automatically executed by

BRUN LIB.

See text and Appendix B of this report.

ADIOS interface control; see [1,2].

Logical operations on 16-bit integer

variables. See Appendix D for listing.

Complex Arithmetic Package see 8].

See text and Appendix C of this report.

REFERENCES

[1] G. Weinreb and S. Weinreb, "ADIOS - Analog-Digital Input Output System

for Apple Computer," NRAO Internal Report No. 212, April 1981.

[2] L. D'Addario, "Improved Software for Controlling the ADIOS Module," NRAO

Internal Report No. 224, January 1982.

[3] A.P.P.L.E., "High Resolution Graphics Character Generator."

[4] N. Konzen, "The &LOMEM: Utility." The Apple Orchard, vol. 1, no. 1,

p. 21 (March/April 1980). See also [3].

[5] J. Crossley, "Applesoft Internals." The Apple Orchard, vol. 1, no. 1,

p. 12 (March/April 1980); also Call A.P.P.L.E. In Depth, no. 1,

p. 51 (1981).

C. Bongers, "In the Heart of Applesoft." MICRO-the 6502 Journal, no. 33,

p. 31 (Feb. 1981).

[6] S-C Software, P. 0. Box 5537, Richardson, TX 75080; telephone (214) 324-2050.

[7] "Apple 6502 Editor-Assembler" manual.

[8] S. Keller and L. D'Addario, "Complex Math Package for Apple II Plus Computers,"

NRAO Internal Report No. 226, January 1982.

-13-

Appendix A

INTERNAL ORGANIZATION OF THE BINARY LIBRARY

The following information is provided for the benefit of those wanting to

write programs for the library or to modify it. Familiarity with 6502 assembly

language programming is assumed.

Two assemblers were evaluated for this application, the S-C Assembler II [6]

and the DOS Tool Kit Editor-Assembler [7]. Several other assemblers were considered

on the basis of their advertised features. The S-C Assembler II was selected,

primarily because of a feature that allows the various subroutines to be maintained

in separate source files but assembled together. The assembler accepts the

pseudo-op

.INCLUDE filename

which causes the specified source file to be included in the assembly in place

of the pseudo-op. This assembler has the disadvantages that its editing facilities

are poor and it stores the source code in a way that is not compatible with other

editors.

To produce the library, a source file called LIBROOT was created containing

the code for the indirect entry JMP table, the version number, the pointer reset

program, and a list of .INCLUDE pseudo-ops for the subroutines to be assembled.

Also in LIBROOT is a list of label definitions ("equates" or .EQ pseudo-ops) for

addresses commonly needed by subroutines, including a large number of Applesoft

internal subroutines and zero page addresses.

The library is maintained on a disk called the "NRAO Binary Library Master

Disk," which includes a copy of the assembler; LIBROOT; the source code for each

subroutine; and binary files with the current versions of the assembled library.

-14-

Appendix B

LISTING OF "LINK" SUBROUTINE

2770 .TM LINK
l000 ***
1010 * LINK PARAMETERS FRnM APPLFSAFT
102A *
10:==o 4- LRn. REV 820111.
1040 * -

ool q- 1 05A PTABLE .E0 $19 PARAMFTFR AnDRESR TABLF, TRW $1F.
AAFA- lARA PTABLE2 .E0 $Ft- SErONDARY PTPBLE

1A7A

1525- A2 AO 10RA LINK LOS #0

1537- RR AR lAqA .1 STS TEMP
1 529- 2A B7 OA 11AA JSR rHRGnT NEST CHAR OF BASIC TFXT.
152r- FO IB 1110 BEID m.,.. ENn OF BARir RTATEMFNT, FSIT.
1 52E- 20 61 AO 1120 JP rHRGET RKIP OELIMFTER (NORMALLY COMMA).
1531- FA 1R 113A REID .5 FNO OF RASIr STATEMFNT, EXIT.
1577- r9 21 114A CMP #rnMMA nOHBLE COMMA?
1535- FA Aq 1150 BFQ .4 YES: PARAMETER HAS WITTE).
1577- 2A E3 OF 1160 .2 JRR PTRGET GET POINTER TO PARAMETER IN 0=4„,?).
153A- AR AK 1170 71..,. LOS TEMP RESTORE X-REG (HSED BY PTRGET).
153C- 94 1P 1180 STY P1ABLE+1,S
153E- 95 19 1 I 'AA STA PTABLE,X
154A- ER 1 2A0 .4 INX
1541- ES 121A INX
1542- FA OR 1-7:s ia CPS 440R MAXIMHM NHMBFR FIF PARAMETERS IS 3
1544- 30 El 1270 811 .1
1 54R- 2o 35 riq 124A jSR nATP TAPE FOL.= RKIP TO Fiqn nF RT.
1549- 6A 1 250 .5 RTS

1381a
135,113i
1400
1410
1420.
1430
.1 440

4C 10

Hd

eft'

F131

,

A2
P5
OD
FO
CA

PO
20
A2
4C

4E
4E
48
53

OUOTE .E0 $22
ERROR .E4D $0412
LIEENT..JSR CHRGOT CHECK DELIMITER..

' 6Eu . 4 END OF STATEMENT: SYNTAX ERR

* READ STRING FROM APPLESOFT PGH UP TO NEXT QUOTE
* AND COMPUTE ITS HASH CODE:

LOA #0 INITIALIZE HASH CODE
STA TEMP

. 1 jSR CHRGET NEXT CHARi;CTER
BEID ENO OF STRIEHENT?
CMP *QUOTE
EEO .2 YES, END OF NAHE.
CLC HASH IT...
SBC #48 UPPER CASE ONLY
ASL TEMP
ADC TEMP
8Th TEMP
jHP .1 LOOP TO NEXT OinTE

* SEARCH TABLE OF OALID HASH CODER
. 2 LOX #HASHEN-HASHT6

LOA TEMP
HASHTB,X

GEO .6
OEX
ENE

. 4 LOA
LOY
iSR
LDX
jHP

1060
1070
1080

1100
1110
1120
1130
1140
1150

1170
1180
1180
lexo
1210
1220
12:;17-1
1240
1250

127ci
?Ria

1:SC10
I 3 1
:t i
17,7J21
1340
17;5i7i

13R0
1370

rnOE NnT FAHNO.

PRINT ERR MESSAGE
mOi= FOR "SYNTAX ERR"

-15-

Appendix C

LISTING OF "LIBENT" PROGRAM

24 .1 el .1N LIBENT

1000 *+*** ***********

1010 * ROUTINE TO rALL PROPER LIBRARY PROGRAM BASEO ON NAME.
1020 *
leGO * 811210 LK'
j.040 * - - - - - - - -

6022-
D412-
!A -.14::i- 20 B7 00

FI7i 25

1E157-

1536-
ID5C-
LO5E-

i064-

10
Ok
Aq 10
(14

F8
7F
10

08
10
12 04
4E 4B
41- 57
20 4C
42 *Po

55 42

_
• Hd 01
▪ AO 14

8

. AS /UNKNOHN L18 SUBR"/

FOUND., SO jMP TO APPROPRIATE ROUTINE
STX TEMP
LOA #J1-BL-1-1
LOY /iTEL

IN JUMP TABLE:

-16-

Appendix C (continued)

----lu-cw— 65 06 1450 AOC TEW'
ii-Ja - 65 OS 1460 ADC TEMP
1098— 65 0S 1470 Aiii: TEMP 3 BYTES PER ENTRY
lu.-tu— •0 01 1480 BIZ .7 .
iDaF— C8 1490 INY
A.ift-tu— ou A7 iri 1500 .7 STA .8+1
AIDA:3 — SC A8 10 1510 STY .8+2
ILIHb- Gr. A6 10 1520 .8 jMP (*)

157;0 *

1540 * HERE IS THE TABLE OF OALID HASH. CODE
iLI — 00 159A HASHIE .OA #0 *HSE ZERO FOR PROTECTED ROUTINES
luHH— tJu 1560 . DA 4141
10B— 56 1570 . 0A *86
lukt...- 7C1 1580 . DA #125
ADAD— 36 15q0 . 0A #59____
WHt- 7A 1600 . DA #122

•WHI-- EC 1610 . 0A *236
iiY60 — OA 1620 . DA #9
ii":161— 64 167=0 . DA #100
wc.c.— 32 164A :OP #50
ii:163— S0 165• . 01; #144
ii:164— A0 16S1 . DA #1S0
iLlb0- 4- 1670 R OA 175:

: uw,
--.
 —: iD 16RO . 0A *29.:

1:187— 62 11:-...;e1 . 0A *98_ _
A.ibi.-;- Fi 1700 . 0A #241
108q— 51 1710 HASHEN .0A #81

'1 720 . EN

i5F7—
L5F5—
15FC-
1 -5FF—
IA1712—
1604—
1607—
160A-
1R1710—

1612—

161E-

162i-

11;27—

*.3.1
IC

15
11

23
15

16
16
16

16
16

F...

OR
1710
05:1

I;
16

Appendix D

LISTING OF LOGICAL OPERATION SUBROUTINES

2350 .IN LOGICAL
1000 **
1010 * LOGICAL OPERATIONS ON INTEGER UARIABLES.
1020
1030 CALL ADR,Z%=X%-f.Y%
1040 * WILL COMBINE (X%) WITH (Y%) AND PUT RESULT IN (2%) I

1050 * THE OPERATION PERFORMED WILL BE 16—BIT LOGICAL:
1060 *
1070 *
1080 *
1090 *
1100 AND16
1110
1120
1130
1140 ORD=
1150
1160
1170
1180 XAR16
1190
1200
1210 LOGIC
1220
1230
1240 OPER'
1250
1260
1270
1280 OPER2
1290
1300

IF (40:0-AND16,.. OR
IF (ADR OR16, :OR
IF (AOR)=XOR16.

LOA 44:$31 AP miDE
8Th °PERI
8Th OPER2
JHP LOGIC
LOA 4411 AP rADE FOR ORA (M).Y
STA OPERA
8Th OPER2
jMP LOGIC
LOA 4451 OP CODE FAR EOR 0-0,Y
8Th °PERI
8Th OPER?
JSR LINK
LOY #0
LDA (PTABLE+2),Y
AND (PTABLE+4),Y
8Th (PTABLEVY
INY
LOA (PTABLE+2),Y
AND (PTABLE+4),Y
STA (PTABLE),Y
RTS

AND
OR'
XOR

GET LEE: OF X.
OPERATE HITH Ls8 oF Y.
RESULT TO LSE: OF Z.

GET MS8 OF X.
OPERATE WITH 1-68 OF Y.
RESULT TO MSB OF 7.
DONE.

been extended passing up to six parameters insteadto allow. LINK has

addresses of the 4th, 5th, and 6th parameters are storedthree.

Versions 3.0 and 3.1 of the NRAO Binary Library are now current. Changes

escribed U EDIR #225, are as follows:

beginning at PTABLE2=SFA.

Errors in CMUL and CDIV have been corrected.

did not handle properly the case where the result used the

an operand.

3. POLAR has been changed to conform to the description In EDIR #225.

NATIONAL RADIO ASTRONOMY OBSERVATORY

Addition to EDIR. No. 225

A Library of Binary Subroutines for Apple II Plus

NRAO BINARY LIBRARY VERSIONS 3.0 and 3.1

4. To save space, some code common to CMUL, CDIV, POLAR, and RECT has been

moved to a subroutine called LINKC; the latter calculates the addresses o

imaginary parts of passed parameters.

5. The new routines for handling the ADIOS Module (see addition to EDIR #224,

dated March 30, 1982) have been incorporated. The (Ad routines ADIOS and ADOUT

have been deleted.

6. The hash code table used by LIBENT has been moved to LIBROOT for

convenience in maintaining the library.

Changes 1 through 4 have also been incorporated in ve

which should be compatible with 2.0 and 2.1.

Persons desiring copies of the library object code or the source code of

any subroutine should contact Stowe Keller or Larry D Addario. Notices of future

revisions will be sent only to known users within NRAO and Persons requesting

to be put on a mailing list.

From the attached listing one can determine the entry points of each

routine (direct and indirect), the name used to access each routine through

LIBENT, and the memory occupied by the library.

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

1..1014 00
1.511- 80
1151:12- 89
150:3- Cc)
1504- 38
1505- 7A
1506- EC
luR7 09
1508- 64
1509- 32
150A- 90
150B- PO
150C- 4F
1500- 10
150E- 62
15AF- Fl
1510- 51

LASTL8 EQ *
L 'BEND . *

. EN

2700
2710
272E1

E5R-
I E58-

.11R $1400
.TF LIB 3.0

,IBRARY .1E0 *

* LINKS TO SjBROUTINE!--:
JTBL JMP LOADER

...111 .1D LINK
JMP AINIT
jMP TSERV
JHP ANO16
-MP OR16

1111D X0R16
JHP CAOD
JMP CMUL
JMP CO IV
-MP POLAR
JMP RECT
JHP ML INK
JMP 14002X2
iMP SUB2S2

MUL2X2
JHP INV2X2
JMP LIBENT
.BS LIBRARY-1-$FF-*

VERS * DA #30 VERSION NUMBER
* HERE Is THE TABLE OF VALID HASH CODES FOR
HASHTB .0A #0 *USE ZERO FOR PROTErTE0

.DA #141 "LINK"
.0A *137 "AINIT"
.0A #201 "ASERV"
.0A *59 "AN016"
_DA #122 11 OR16"
.DA #236 "X0R116"
_DA #s "CAOD"
.011 *100 "CMUL"
.0A i*512.1 "COIV"
.0A *144 "POLAR"
.DA *160 "RECT"
.0A *79 "MLINK"
-OA *29 "A002X2"
.0A *98 "SUB2S2"
.DA 4t241 14 M1JL2S2"

HASHEN .0A *81 "INV2X2"

1400- 4C
41:17- 4r

14171R- 4r
1409- 4C
140C- 4C
140E-- 41
1412- 4C
1415- 4C
1418- 4r
1418- 41
141E- 4t,
1421- 4C
1424- 4C
1427- 41
1421-1- 4C
1420- 4r
1430- 4r
143:2- 4L.
1436-
14FF-

F8 10 1270
1280

lE 1290

.:!=f;
61:1
84
10

8
7=3
4E
8F
F6
AA
4
34

. 7
t

1000
1010
10�:
103E)
1040
1050
1060
1070
1080
1090

5 1100
15 1110
18 1120
15 1130
17 1140
Li 1.1.50
17 1163
17 1170
1 1180
17 1190
10 1200
13 1210
19 1220
19 1230
lA 1240
lA 1250
IC 1260

IBENT:
RAUT INES

