NATIONAL RADIO ASTRONOMY OBSERVATORY
 Green Bank, West Virginia

Electronics Division Internal Report No. 146

256-CHANNEL FILTER RECEIVERS

Bob Mauzy

August 1974

Introduction

This report discusses the design of a series of four 256-channel filter receivers having individual channel bandwidths of $0.1,0.25,0.5$ and 1.0 MHz . These systems have an input IF center frequency of 150 MHz and can be operated as two parallel, independent, overlapping 128-channel systems or as a single series 256-channel system. They, along with a 512-channel integrator-multiplexer system ${ }^{1 /}$ and computer, are being used for spectrum analysis at millimeter wavelengths. Each filter system is contained in a 19 inch rack mounted drawer 8 3/4 inches high by 21 inches deep. A front view is shown on the facing page. Power supplies are in a separate $51 / 4$ inch drawer, one drawer providing power for two receivers.

Channel Filters

The individual channel filters are two pole networks designed for about 0.1 dB ripple so that with coil Q variations and other tolerances the band shape remains flat. The band edges or adjacent channel crossover points are defined as 3 dB down. To obtain a constant bandwidth per channel for a series of side-byside channels the $Q^{\prime} s$ and L 's must change while parallel $C^{\prime} s$ and R 's remain constant. Figures $1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D show component values for sets of 16 channels for each system.

The inductors chosen are Cambion 7107 series coils. They were preferred because of metal can shielding, small size, low cost and specified ferrite

[^0]material. The core materials used for the values required are either Carbonyl SF or TH having permeability stabilities of .0025 and $.0015 \% /{ }^{\circ} \mathrm{C} . \mathrm{Q}$ stability is $-.04 \% /{ }^{\circ} \mathrm{C}$ for both types. Silvered mica capacitor stability is typically $+40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. These coefficients will produce filter shifts of less than 2% of a channel width for $10^{\circ} \mathrm{C}$ change. Measurements on a 1 MHz bandwidth filter at 23.5 MHz gave less than 1% of channel width shift for a $10^{\circ} \mathrm{C}$ change. Special coils were obtained for the 0.1 MHz system to meet higher Q requirements.

Examples of filter shapes are shown in Figure 2. The two extremes in center frequency are shown superimposed here to show the maximum shape change due to the required difference in $Q^{\prime} s$. The filter is driven from a transistor collector and its output feeds a Darlington follower. Channel circuit schematics are shown in Figure 3. The extra resistor and capacitor at the Darlington input are to suppress high frequency oscillations. Adjustments are made with a slow sweeper and with maximum post detector bandwidth (op amp input and feedback C's removed).

Detector

In previous NRAO filter systems the GE BD-7 back diode has been used as a square law detector. It is more stable with temperature than conventional diodes and provides a fairly wide square law range. The curve is adjusted by varying the DC load on the output. This adjustment did not always give satisfactory results, and in our tests it was found that the load changed the shape of the error curve as well as the tilt. It appeared to be an indirect method of curve control.

In the process of experimenting with the circuit it was discovered that source impedance was also a handle on the curve. As this was pursued, more accurate square law curves were obtained with the diode working from a controlled source impedance and into a high resistance DC load. Optimum source impedance for
for the BD-7 appeared to be around 200 ohms. This seemed rather high so some lower impedance and more economical BD-4's were ordered. These worked well with a source impedance around 25 ohms so could be driven directly from an emitter follower. DC current in the driver then became the curve control adjustment if required. A sample of diodes in the new circuit showed that the error spread without adjustment was not excessive. Replacing a few diodes could be less expensive than adding another adjustment.

The first large quantity experience with the circuit was in the 1.0 MHz system. The average error curve for $C W$ had a 1.2% positive slope from the peak output to a level 10 dB below. This slope is less on noise but warranted a change in later systems. The emitter resistor on the detector driver was changed from 2.7 K to 2.2 K ohms. The remaining sys tems gave the average CW error curve and met the limits shown in Figure 4. The equivalent curve for a 0.5 MHz bandwidth noise signal is also shown. The data was recorded at minimum op amp gain but has been shifted to represent an average gain setting. Using the limits shown about 10% of the diodes were rejected. In most cases a resistor change rather than the diode would have given a flat curve but there would have been more spread in the peak point level. The BD-3 may be equally satisfactory with somewhat lower source impedance and at lower cost but samples were not received in time for test.

Op Amp

The Analog Devices 741 KN op amp was selected because of its excellent drift spec vs. cost. Maximum voltage drift is less than $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. One order had very poor reliability which led to our testing of all op amps. The problem was due to a chip change to fix another problem and the result was spurious oscillations that would show up in the first few hours of operation. It resulted in the input current increasing and the output becoming noisy and drifting to saturation.

As reliability was very important a test board was made to burn in 72 op amps at a time. Each chip was operated at least 24 hours, sufficient time to catch nearly all bad actors as the manufacturer stated and our experience supported. As an additional test the IC's were cycled from 25 to $45^{\circ} \mathrm{C}$, the drifts measured and all units exceeding $1 / 2$ the voltage drift specifications were not used. This rejected about 10\%. All oscillating chips were replaced by Analog Devices without charge. Had the reliability problem been suspected at the time the p.c. board layout was made, space for some type of socket or individual pins would have been provided.

The op amp is operated at a gain of about 400 , so $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ would produce $6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at the output. If the normal output is 4 V this represents $0.15 \% /{ }^{\circ} \mathrm{C}$. This figure could be reduced by use of a more expensive op amp such as the Precision Monolithics OP-05CJ but the improvement was not considered justified. The detector diode has a dirft of about $0.15 \% /{ }^{\circ} \mathrm{C}$. Also, new computer programs measure and correct for zero and square law errors. Molded carbon resistors drift about $.02 \% /{ }^{\circ} \mathrm{C}$ so precision resistors would be desirable if significant improvement were attempted.

Filter Board

The channel circuit, as with all other parts of the system, was designed with compactness, simplicity, and cost in mind. To build 256 channels in the space of some previous 50 channel receivers made packaging a prime consideration. On the filter boards it was necessary to provide convenient access to op amp gain and zero controls. Individual channel monitoring on the boards would permit uninterrupted output wiring from the filter card connector to the back panel connector. As many as 25 filter cards have been stacked side-by-side across the width of a drawer but without shields and with very limited height for components.

The 256 channels makes 16 a convenient number to work with and a 16 -channel multiplexer chip suitable for monitoring became available at that time. So as originally suggested in the job outline the cards were designed for 16 channels each.

The logical arrangement for best high frequency performance and location of adjustments was to feed a signal down the middle of the board and have the channel circuits branch out in opposite directions. Refer to Figure 5 for the board layout. There was concern over coupling between adjacent channels with close physical spacing, so three things were done to reduce the probability. First, shields were added between cards. Second, the channel layout was arranged to return all grounds to one side of the circuit so that ground currents from two sections would not flow in common land areas. Third, the channels were staggered so that adjacent frequencies were not physically adjacent. There are at least two channel widths between adjacent circuits. Breadboard checks showed the coupling between adjacent circuits tuned to adjacent channels to be negligible but staggering was included as no cost insurance. Board channel numbers are identified by the color coded test points, channels 1 thru 9 along the long edge and 10 thru 16 along the short edge. White dots mark the zero pots to distinguish them from the gain controls.

The large IC is a multiplexer chip used for monitoring the output of each channel individually. Siliconix introduced the DG 506, 16-channel multiplexer shortly before this design was begun. Procurement was very slow and units failed frequently. Harris Semiconductor came to the rescue by releasing their version (HI 506) with built-in protective circuits. These proved much less susceptable to burnout and are the only recommended replacement. These chips are controlled through the digital control card by the front panel slew switch. Channel outputs are also summed thru resistors adjacent to the multiplexer IC for total power monitoring.

A second circuit near the edge connector is the input amplifier. The IF signal enters the board via small coax, is amplified 17 dB and fed to the filter circuit inputs. See Figure 25. A snap-on coax connector, mating with the Oscil-lator-Mixer unit, permits easier card removal.

Each filter board contains about 690 components and 160 wires and jumpers mounted in 2000 holes in an area 7.6×7.85 inches. The 16 filter cards, a multiplexer driver and a power monitor card are mounted in a hinged card holder. See Figure 6. This arrangement allows convenient access to zero and gain pots and channel output test points.

Channel Monitor Digital Controller

The channel monitor provides a conventional analog readout (meter) of all 256 channels selectively by connecting any one channel to the monitor meter via analog gate integrated circuits. There are 16 integrated circuits, one located on each of 16 filter bank cards; each integrared circuit comprises 16 analog gates for monitoring any one of 16 channels on a particular filter bank card.

In the schematic, Figure 7, the 16 outputs "EN-0" through "EN-15" select one only of the filter bank cards by selection of the particular analog gate integrated circuit located on the card. The 4 outputs labeled A_{0}, A_{1}, A_{2}, and A are binard controls which select, within a filter bank card, which channel is to be monitored.

In Figure 7, chips " C " and " R " are octal decoders which convert the binary counter " D " output to provide the "EN-" signals via inverters "J", "P", and "U" to the analog gate circuits. Binary counter "L" provides the binary count to the analog gates to select one of sixteen channels within a filter bank card.

The count control input, pin 1 , is grounded in the 1.0 and 0.5 MHz systems and open in the others to modify the counting sequence. The Rev "B" input, pin E,
is grounded in the parallel mode by the Series-Parallel switch on the back panel to reverse the B section. Figures 11A, B, C, and D show the system channel numbers vs. card and card channel numbers.

The binary count provided by the up/down counters is converted to "Human" decimal terms (BCD) by "ROM" chips "A", "B", and "H". the "LCR" circuits 20 and 21 suppress any possible RFI which may issue from the TTL logic system.

Clock oscillator "E" is the system time base providing the fast (when enabled by the "ENB Fast" control input) channel step up/down sequency as controlled by the up/down select input pin 5. The "ENB Slow" signal causes the channel monitor select sequence to occur at a slower rate $(4,5,6,8,10,12$, or 16 times slower) with the dividing action of chip " M " according to an arrangement of the "Speed Ratio Selector" strap pins "2", "3", and "4" and the select pin " D " and chip " M " type. Chips " N " and " $B B^{\prime \prime}$ retime the control signals, thus preventing spurious counts when changing the monitor system control selector switch.

System

In an effort to minimize equipment the card input spectrums and oscillator frequencies were arranged to require a minimum number of oscillators. The arrangements are shown in Figures $8 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, and D. The system is split into two identical sections of 128 channels each with the input center frequency at 150 MHz . By going thru the IF Processor the two sections are arranged side-by-side, still centered on 150 MHz . Ignoring the Processor for the moment, the figures show that the inputs to sections A and B are mixed with four oscillators to obtain the frequency bands for the cards. In the 1.0 and 0.5 MHz systems the oscillators are $1 / 2$ of a card width from the closest channel. For the 0.25 and 0.1 MHz systems the spacing is $3 / 2$ of a card bandwidth. The close spacing in the
first two systems limits the maximum frequencies on the filter cards to 24 and 12 MHz . If this arrangement were used on the second two systems the cards would have input frequencies as low as 0.8 MHz , requiring large capacitors. A second and more serious problem exists with the card filters focated in the 150 MHz region. These would have to provide unusual sharpness to reject images one card bandwidth anyway. For this reason the $3 / 2$ spacing was used. The filters provide greater than 25 dB rejection at the edge of the image band. In-band filter flatness was spec'ed at $<1 \mathrm{~dB}$, or 0.5 dB when convenient, to limit variations in power between channels.

The maximum spread of signal levels out of the detectors was limited to 1.5 dB . This was obtained by tight in-band flatness limits on the card filters, adjusting the slope on the Amplifier-Splitter units to compensate for increased mixer and filter losses at higher frequencies, and trimming some filter card input amplifier gains and individual channel gains. Close tolerances on the levels and some restricting of detector variations made it possible to operate at higher average detector levels. The 1.5 dB remaining was removed by the op amp gain controls.

Parallel input signals A and B of -30 to -40 dBm are level adjustable by 10 dB variable attenuators on the front panel. The signals are then band limited, amplified, divided and fed to four splitters. System block diagrams are shown in Figures 9A, B, C, and D. The splitters are active dividers to give good reverse isolation. Reference to an IF processing diagram will show that an LO for two card bandpasses is in the center of a third bandpass. The LO's are too close to the desired bands to obtain high rejection in the bandpass filters. It is, therefore, necessary to provide good isolation in the Splitters and Amp-Splitters. Figure 10 shows typical signal power levels and LO leakage.

Channel designations for the A and B receivers as read on the front panel and frequency charts (Figures 11A, B, C, and D) go from 0 thru 127 and 128 thru 255. Increasing channel numbers denotes increasing IF frequency for both sections in either series or parallel mode. A toggle switch on the back panel controls the reversal of the B section counting in the channel monitor circuits and provides a closure for the computer so it can arrange the data properly.

IF Processor and Oscillator-Multipliers

The IF processor input is limited by a filter to reject the image and out-of-band signals. The desired band is amplified, converted, filtered, and divided; one output feeding the B section and the second output feeding a second mixer to position the specturm for the A section. See Figure 12. This simplified rearrangement of the spectrum is possible because mixer RF-IF isolation is $>30 \mathrm{~dB}$.

The Oscillator-Multiplier units provide LO signals for the Processor. A crystal oscillator signal in the 75 to 107 MHz range is fed thru two balanced doublers and an amplifier to provide an output of about +8 dBm . See Figure 13 for a typical schematic. Unwanted signals are more than 50 dB down. One in-band signal at twice the crystal frequency is suppressed by shielding to obtain at least -65 dB . Photos of the Processor and Oscillator-Multiplier units are shown in Figure 14.

Other Units

The Amplifier-Splitters, Splitter units, Oscillator-Mixers, Power Monitor card and zero check circuit are conventional circuits that are self-explanatory by referring to their schematics in Figures 15 thru 19. Photos are shown in Figures 20 and 21.

Drawer Layout

Figures 22 and 23 show the location of major assemblies in the drawer. Access to assemblies in the bottom of a deep, crowded chassis is a problem. It was reduced on these systems by mounting the tubular card filters, Splitters and Oscillator-Mixers on two bars extending across the width of the drawer. By disconnecting the snap-on card cables, 4 Amp-Splitter output cables, a power connector and 4 screws the entire assembly can be removed. Access to the active circuits with the system operating is available by lowering the rear panel as in Figure 23. The back panel is shown in Figure 24.

Power

The power supply drawer contains two sets of supplies and a voltage monitor circuit. The supplies have isolated ground to prevent ground currents from flowing in the rack.

+15 V	0.95 A
-15 V	2.4 A
+5 V	0.8 A

Cost
An estimate of parts cost is as follows:
Channe1 circuit \$ 16.00
Filter board \$ 314.00 ... \$19.62/channel

System \$8500.00 ... \$33.20/channe1

A spare filter card and power supplies are included in the system cost.

Acknowledgements
Recognition is given to Lewis Beale who did a major part of the construction and all of the testing. Ray Hallman contributed the digital card and readout design, and wrote the description given here.
$Q=1.5 f_{9} 0.1 \cdot 15 f_{0} \quad L=1 / 39.5 f_{1}^{2}$
$0.1 \mathrm{Mc} / \mathrm{cl} \quad c^{\prime}=71 / f_{0}$

c^{\prime}

FIG. IB

FIG 1 C

$1.0 \mathrm{MHz} / \mathrm{ch}$.	$Q=1.62 f_{0}$	$C^{\prime}=184 / f_{0}$

FIG. ID

FIGURE 3

FILTER CARD
FIGURE 5

CARD HOLDER UP
FIGURE 6

CHANNEL MONITOR DIGITAL CONTROLLER

FIGURE 8A
0.5 MHz IF Processing

FIGURE 8B

FIGURE 8C
0.1 MHz IF Processing

FIGURE 8D

Parallel Inputs
A\& B
Series Input 22 to 278 MHz .. 30 to -40 dBm

256 Channel Filter Receiver 1.0 MHz Channel Bandwidth

FIG. PA

256 Channel Filter Receiver
0.5 MHz . Channel Bandwidth

FIG. 9 B

Parallel Inputs
$A \& B$
134 to 166 MHz
Series Input

256 Channel Filter Receiver
0.25 MHz Channel Bandwidth

FIG. 9 C

256 Channel Filter Receiver 0.1 MHz Channel Bandwidth

F/G. 9 D

256 CHANNEL FILTER RECEIVER
$1 \mathrm{MHz} /$ CHANNEL

Channel no.

NCREMENT $=\mathbf{1 . 0 0 0}$
FREQUENCY CHAR

EREQUENCY CHART

F/G. 11 E

F/G. 13
306.4 MHz uscillator-Multiplier

Amplifier-Splitter
50 to 250 MHz

$$
F / G .15
$$

FIG. 17 Oscillator-Mixer

FIGURE 20

FIGURE 21

TOP VIEW
FIGURE 22

INSIDE BACK
FIGURE 23

BACK PANEL
FIGURE 24

* May vary for gain adjustment

Filter Board Input Amp
FIGURE 25

[^0]: 1/ A 512-Channel Integrator and Multiplexer by C. Pace and J. Payne, EDIR No. 134.

