Dark Matter and ISM in the THINGS galaxies

Erwin de Blok ASTRON, Netherlands

Green Bank, 1 April 2012

THINGS

- The HI Nearby Galaxy Survey Walter et al (2008)
- VLA B,C,D array of 34 nearby Sa-Irr galaxies
- distance 3-15 Mpc
- ~6" spatial (100-500 pc), 2-5 km/s velocity resolution
- overlap with SINGS (Spitzer) and GALEX NGS (UV)
- In progress: HERACLES CO observations (Leroy)

Spiral Galaxies in THINGS — The HI Nearby Galaxy Survey

VLA THINGS: Walter et al. *Spitzer SINGS:* Kennicutt et al. *Galex NGS*: Gil de Paz et al.

Dwarf Galaxies in THINGS -- The HI Nearby Galaxy Survey

Galaxy Dynamics in THINGS — The HI Nearby Galaxy Survey

The HI Nearby Galaxy Survey Color Coding: **THINGS Atomic Hydrogen** (Very Large Array)

(Spitzer Space Telescope) **Star Formation** (GALEX & Spitzer)

Color coding: **THINGS HI distribution:** Red-shifted (receding) Blue-shifted (approaching) **Rotation Curve**

Image credits: VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

NGC 2403

NGC2403

de Blok et al 2008

The THINGS Curves

Tilted Rings

 Model galaxy with concentric rings with center (x,y) and systemic velocity V_{sys} each with their own i, PA, and V

 $V(x,y) = V_{sys} + V_C(R) sin(i)cos(\theta)$

Mass Models

Dark Matter Halo Models

Examples

Rotation curve shape

The rotation curves are scaled with respect to $V_{0.3}$ at $R_{0.3}$ where $d(\log V)/d(\log R) = 0.3$.

The scaled rotation curves rise too slowly to match the cuspy CDM halos.

Slopes

Mean value: $\alpha = -0.29 \pm 0.07$.

Value found for LSB galaxies: $\alpha = -0.2 \pm 0.2$, (de Blok et al 2001, 2002)

Slopes

Mean value: $\alpha = -0.29 \pm 0.07$.

Value found for LSB galaxies: $\alpha = -0.2 \pm 0.2$, (de Blok et al 2001, 2002)

Dark Matter Halo Models

Cold Dark Matter (NFW)

Empirical (ISO)

log R

V

bo

Dark Matter Halo Models

Einasto mass profile (Cardone et al 2005; Mamon and Łokas 2005)

The Einasto Halo

Index n regulates inner slope of density and rotation curve

Einasto and CDM

Einasto halo gives good description of CDM halos

CDM halos yield fairly narrow range in n. Navarro et al (2004): $n = 6.2 \pm 1.2$. Generally one finds $5 \le n \le 10$

Einasto halo, Kroupa IMF, free n

Comparison with ISO and NFW

Einasto halos provide better fits, also to observed rotation curves

Einasto Halo Parameters

Kroupa IMF

Einasto slope and resolution

THINGS, Einasto halo, free n, Kroupa IMF

Einasto slope and resolution

THINGS, Einasto halo, free n, Kroupa IMF

Comparing free and fixed n

89% fixed index fits worse than free index55% fixed index fits worse than ISO80% fixed index fits better than NFW

Einasto Results

- Einasto fits better than ISO or NFW
- However, no unique n-value, no scaling between masses
- No universal Einasto halo in THINGS galaxies
- Typically smaller n-value than CDM halos. n>4 is rare
- To test: larger range in masses, more M/L* scenarios

Phases of the Neutral ISM

Phases of the Neutral ISM

Shifting Profiles

False Super Profiles

- Many ways to get a non-Gaussian super profile
 - Inclination effects
 - Thick, lagging component
 - Asymmetric input profiles
 - Inaccurate shuffling
 - Bulk motions (galaxy interaction, starburst)
- Tested and under control

Symmetrical Profiles

 $|v_{Her3}-v_{IWM}| < 5 \text{ km s}^{-1}$ to identify symmetrical profiles

Injamasimanana et al (2012, in prep)

τU

08

•

10

12

 $\sigma_{
m b}~[{
m km}~{
m s}$

Clear detection of broad and narrow component

Global trends

Injamasimanana et al (2012, in prep)

Refining the pro

Star formation rates

Define SFR masks using Leroy et al (2008) THINGS star formation rate maps (24 μ m Spitzer and GALEX FUX)

Super Profiles

- Can the cold HI be used as a proxy for molecular gas observations?
- Is there a H₂/cold HI factor?
- Input for numerical models

Summary

- Current high-resolution, multi-wavelength data sets are a goldmine for galaxy astro-physics
- Halos well fit by Einasto model with low n
- HI profiles show narrow and broad components
- Broad/narrow ratios seem related to SF