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TF great for distances, 
which are an essential 
step towards physical 
understanding:

what does it mean?

“The Tully-Fisher Relation is God!”
Sancisi (1995, private communication)



NGC 6946

What we measure
• Luminosity

• Stellar Mass
• Gas: HI, H2

• Rotation speed
• line-width
• rotation curve
• inclination

Rotation curve data from
Boomsma et al (2008) [HI]
Daigle et al (2006) [Ha]
Blais-Ouellette et al (2004) [Ha]
Mass model built from
2MASS K-band data (SSM)
(note tiny bulge - Renzo’s rule)
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outer (~flat) velocity maximum velocity peak velocity

THINGS data (Walter et al 2008)



Velocity estimators:

W20 W50

Vflat
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THINGS data
(Walter et al 2008)



Luminosity and line-width are 
presumably proxies for stellar mass 
and rotation velocity.

line-width

Sakai et al. (2001)

Bothun et al. (1985)
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Tully-Fisher relation
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double M*/L

...but stellar mass is completely 
dependent on choice of mass-to-
light ratio (and degenerate with 
distance)
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half M*/L

...but stellar mass is completely 
dependent on choice of mass-to-
light ratio (and degenerate with 
distance)
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Scatter in TF relation reduced with resolved rotation curves (Verheijen 2001)

Stellar Mass TF
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Low mass galaxies tend to fall 
below extrapolation of linear fit to 
fast rotators (Matthews, van Driel, 
& Gallagher 1998; Freeman 1999)
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Gas mass by itself does NOT 
produce a good TF relation, at least 
for fast rotators.

Gas Mass TF
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Stellar Mass TF
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Baryonic TF

Mb = M∗ + Mg

Adding gas to stellar mass restores 
a single continuous relation for all 
rotators.

Baryonic mass is the important 
physical quantity.  It doesn’t 
matter whether the mass is in 
stars or in gas.
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Twice Nominal M*/L

outer (flat) velocity
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Baryonic TF

Now instead of a translation, the 
slope pivots as we vary M*/L.

Scatter increases as we diverge 
from the nominal M*/L.



Baryonic TF

Nominal M*/L
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outer (flat) velocity

Now instead of a translation, the 
slope pivots as we vary M*/L.

Scatter increases as we diverge 
from the nominal M*/L.



Half Nominal M*/L
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Baryonic TF

Now instead of a translation, the 
slope pivots as we vary M*/L.

Scatter increases as we diverge 
from the nominal M*/L.



Quarter Nominal M*/L

outer (flat) velocity

Ba
ry

on
ic

 M
as

s

Baryonic TF

Now instead of a translation, the 
slope pivots as we vary M*/L.

Scatter increases as we diverge 
from the nominal M*/L.



outer (flat) velocity

Zero M*/L
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Baryonic TF

Now instead of a translation, the 
slope pivots as we vary M*/L.

Scatter increases as we diverge 
from the nominal M*/L.



Low mass galaxies considerably expand range of the TF relation.
Gas dominated galaxies can provide absolute calibration of mass scale.
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Gas dominated galaxies can provide absolute calibration of mass scale.

Systematic errors in M*/L no longer dominate the error budget for 
galaxies with Mg > M*.
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Gas Rich Galaxy Baryonic Tully-Fisher relation
(Stark et al 2009; Trachternach et al 2009; McGaugh 2012)



try fits with many different combinations
of IMF and populations synthesis models

select Mg > M!

slope x = 3.94± 0.07 (random)± 0.08 (systematic)
Stark, McGaugh, & Swaters (2009, AJ, 138, 392)

A = 47± 6 M! km−4 s4

Mb = A Vf
x

Fixing the slope to 4 gives
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Intrinsic scatter small - consistent with zero

σM < 0.15 dex

(consistent with UMa result of Verheijen 2001)



Baryonic Tully-Fisher relation: slope depends on Velocity estimator

line-width outer (flat) velocity
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McGaugh et al. (2000)

Gurovich et al. (2010)

Begum et al. (2008)
Trachternach et al. (2009)

McGaugh (2005)
Stark et al. (2009)

slope: x = 3.5 slope: x = 4

Begum et al. (2008)
Trachternach et al. (2009)
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Stellar mass-to-light ratios in good accord with population synthesis models

Recovers expected
• slope
• normalization
• scatter

constrains IMF: ~ Kroupa

excludes models with excess 
TP-AGB contributions

M∗
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But why does it work?

Aaronson et al (1979)

V 2 =
GM

R

V 4 ∼MΣ

Galaxies of different surface 
brightness should fall on 
different, parallel TF relations.
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But why does it work?

Mb ∼ fbMtot ∼ V 3

CDM halo mass-velocity relation

Wrong slope, wrong 
normalization.
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But why does it work?

Mb ∼ fdfbMtot ∼ (fvV )3CDM+Feedback

log E = 1.2− log
(

Vf
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)
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Can now fit anything.  As long as  the feedback from star formation 
is most effective in galaxies that have formed practically no stars.
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But why does it work?

Mb =
V 4

a0G

MOND

Imposed by force law.

Successfully predicted location of 
gas rich galaxies, but
We hate MOND.



But why does it work?

Mb =
V 4

a0G

MOND

Imposed by force law.

Successfully predicted location of 
gas rich galaxies, but
We hate MOND.

X



Baryonic TF Relation

• Fundamentally a relation between the 
baryonic mass of a galaxy and its rotation 
velocity

• Intrinsic scatter negligibly small

• Physical basis of the relation remains unclear

• Tantamount to Natural Law?

Relation has real physical units if slope has integer value -
Appears to be 4 if  Vflat is used.

TF is God!



Application of Renzo’s 
Rule to the Milky Way
• See poster


