HI Properties of Massive Galaxies

Barbara Catinella

Max Planck Institute for Astrophysics

G. Kauffmann (MPA), D. Schiminovich (Columbia), S. Fabello, J. Wang (MPA), L. Cortese (ESO), A. Saintonge (MPE), R. Giovanelli, M. P. Haynes (Cornell), T. Heckman, S. Moran (JHU) ...

TF35 Workshop, Green Bank, Apr 1 2012

Galaxies: a Bimodal Population

Early-type galaxies

Late-type galaxies

colors from red to blue bulge-to-disk ratio decreases star formation activity increases stellar population age decreases

Surface Brightness Sersic Index Luminosity

(g-r)

Adapted from Blanton et al. 2005

Transition between blue and red sequence

Transition mass at ~3 10^{10} M_{\odot} (e.g. Strateva et al 01, Kauffmann et al 03, Baldry et al 04)

▶ Transition implies quenching of SF. The mechanism(s) involved must affect the HI gas → need to measure HI for large, representative sample of massive galaxies

GASS: The GALEX Arecibo SDSS Survey P.I.: D. Schiminovich (Columbia)

Targeted HI survey: ~1000 galaxies in SDSS+GALEX MIS+ALFALFA footprints, selected only by redshift and stellar mass:
0.025< z <0.05, 10< log M*/M° <11.5</p>

Galaxies observed down to gas mass fraction limit of 1.5-5%

First statistical sample of massive galaxies with homogeneously measured M*, SFR and gas properties

Arecibo large program, started in March 2008.
 DR1: ~20% of survey (Catinella et al. 2010)
 DR2: ~50% of survey (Catinella et al., A&A subm)
 70% of survey completed

ALFALFA detects ~20% (HI-richest objects) → NOT re-observed by GASS

Green: ALFALFA detections of GASS galaxies

BC, D. Schiminovich, G. Kauffmann, M. Haynes, R. Giovanelli

+ Jing Wang, Andrew Cooper et al.

GASS Team

Barbara Catinella Sean Moran Arecibo control room

Silvia Fabello Ronin Jenna Cameron Wu Lemonias Hummels

Detections

Non-detections

SDSS images: 1' (~30 kpc @ z=0.025)

Single-dish HI profiles (beam ~4'): z, V_{rot}, HI flux

Gas Fraction Scaling Relations

DR2 gas fraction scaling relations

Catinella, Schiminovich, Kauffmann et al. 2010 & 2012 (A&A subm)

DR2 HI gas fraction plane

Transition galaxies: anomalous gas content given their optical/NUV colors and µ*

Catinella et al. 2010 & 2012 (A&A subm)

$$\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^n \implies {\rm SFR}/M_* \propto (M_{\rm gas}/M_*)^n \mu_*^{n-1}$$

GASS 3505: a gas-rich, "red and dead" galaxy

Arecibo HI (fru) $h_{H_2}^{(r)} = 0$ $h_{H_2}^{(r)} = 0$ $h_{H_2}^{($

 $\log M_{HI}/M_{\odot} = 9.91 M_{HI}/M_{*} = 50\%$

MMT g and r-band imaging (S. Moran)

Gas fraction plane and HI deficiency

HI deficiency (Haynes & Giovanelli 1984, Solanes et al. 1996...)

HIdef = Log <M(HI, D_{opt},Type)> - Log M(HI)_{obs}

 $HIdef = 1 \implies M(HI)_{obs} = 0.1 \times M(HI)_{expected}$

Boselli & Gavazzi (2006)

HRS HI scaling relations

Herschel Reference Survey (Boselli et al 2010)

322 galaxies (62 E/SO, 260 Sp./Irr)

Volume/Stellar Mass limited - From isolated to cluster galaxies

Nicely extend GASS scaling relations to lower M* and $\mu*$

Cortese, Catinella et al. 2011

HI gas fraction plane and HI deficiency

HRS plane for HI-normal galaxies

Cortese, Catinella et al. 2011

Strong correlation between HI deficiency and distance from the gas fraction plane \rightarrow the two approaches are consistent

Dynamical scaling relations

Tully-Fisher (1977) relation:

- luminosity vs. rotational velocity
- inclined spirals

Faber-Jackson (1976) relation:

- luminosity vs. stellar velocity dispersion
- elliptical galaxies
- * distance indicators
- * constrain galaxy formation and evolution models & simulations

Baryonic Tully-Fisher and Faber-Jackson relations

GASS DR2, N=480 (~300 detections)

BARYONIC MASS

2.0

1.5

2.5

 $Log \sigma [km s^{-1}]$

Catinella, Kauffmann et al. 2012

3.0

2.5

Log or [km s⁻¹]

STELLAR VELOCITY DISPERSION

1.5

2.0

3.0

Baryonic TF and FJ Residuals

Baryonic FJ corrected for dependency on R₉₀/R₅₀

CORRECTED STELLAR VELOCITY DISPERSION

Catinella, Kauffmann et al. 2012

- applicable to large samples
- Iess affected by systematics than TF, FJ -- interesting for evolution of scaling relations
- comparison with models

GASS Scaling Relations: Reference for Higher-z Studies

Comparison with HI observations of SDSS-selected galaxies at z~0.2

- Observations completed in 2011
- ▶ 53 galaxies targeted, 0.16 < z < 0.26</p>
- ≥ 29 detections, ~10 marginal
- ▶ HI mass $2 8 \times 10^{10}$ M_☉
- on-source integration time of 1-5 hrs per object

1 arcmin ~ 200 kpc @ z=0.2

Catinella, Haynes, Giovanelli et al. 2008, ApJL

Comparison with GASS DR2 scaling relations

Catinella et al. (in prep.)

Comparison with GASS gas fraction plane and BTFR

- rare galaxies (regardless of HI content)
- include the most HI-rich galaxies known
- highest-z HI detections
- "normal" SF properties for their HI content
- prototype of galaxies that will be detected in large numbers by SKA and its pathfinders

SUMMARY

➢ GASS is the first study to specifically target a sample that is homogeneously selected by stellar mass (10< log M_{*}/M_☉ <11.5).</p>

HI gas fraction scaling relations

Dynamical scaling relations

☺ Thanks! ☺

HI scaling relations and environment

Cortese, BC et al. 2011

HRS: strong difference between field and cluster galaxies

GASS+ALFALFA stacking will sample the intermediate to isolated density regime

Baryonic TF outliers and V_{rot}/σ

Baryonic TF and MOND

MOND prediction:

 $G M_{bar} a_0 = V_{rot}^4$

Properties of z~0.2 Arecibo detections

Among the most HI massive galaxies known

Comparison with GASS DR2 baryonic FJR

Radio Frequency Interference (RFI)

Time

Satellite RFI

Frequency →

Time →