Thermal OH as a Tracer for the Molecular ISM in the Galaxy

Ron Allen

Space Telescope Science Institute

OH - a "well-plowed" field ...

- A lot of work has been done on OH in the nearly 50 years since the discovery of the 18-cm line emission:
 - Discovery: Weinreb, Barrett, Meeks & Henry (1963)
 - Dust clouds in the Galaxy (...Heiles, Turner, Crutcher, ...)
 - Absorption surveys (... Goss, Dickey, ...)
 - Magnetic fields from Zeeman effect (... Goodman, ...)
 - Excitation determinations (... Rieu, Liszt, ...)
 - Maser sources in the Galaxy, and nearby galaxies (...)
 - Megamaser emission from AGN (...)

OH - a "well-plowed" field ...

- A lot of work has been done on OH in the nearly 50 years since the discovery of the 18-cm line emission:
 - Discovery: Weinreb, Barrett, Meeks & Henry (1963)
 - Dust clouds in the Galaxy (...Heiles, Turner, Crutcher, ...)
 - Absorption surveys (... Goss, Dickey, ...)
 - Magnetic fields from Zeeman effect (... Goodman, ...)
 - Excitation determinations (... Rieu, Liszt, ...)
 - Maser sources in the Galaxy, and nearby galaxies (...)
 - Megamaser emission from AGN (...)

Thermal OH in the Galaxy ...

- The 18-cm lines of OH have been widely observed along specific lines of sight in the Galaxy.
 - Emission/absorption measurements along many lines of sight toward known dust clouds and bright continuum sources have established that low-excitation OH is widespread in the ISM.
 - In the general ISM away from intense IR emission sources the OH emission is faint and the line ratios are in LTE.
- The general Galactic distribution of OH emission is still unknown.
 - A recent mini-survey has highlighted the similarities in the large-scale spatial distributions of 18-cm OH emission and 21-cm HI emission in the Galaxy.

A search for OH in the Outer Galaxy ...

... in the region surrounding Lynds 1204 ...

TF35 - Green Bank

... reveals ubiquitous OH 1667 emission ...

TF35 - Green Bank

7

... with wide velocity extent like the HI ...

Ron Allen - 3 April 2012

... and little resemblance to the CO(1-0).

Ron Allen - 3 April 2012

OH/HI Profile correlation

OH/HI Profile correlation

OH/HI Profile correlation

Let's take a closer look ...

TF35 - Green Bank

Ron Allen - 3 April 2012

... at the profile details:

Faint OH(1667) at Onsala

Allen et al 2012, AJ, 143, 97

... at the profile details:

Faint OH(1667) at Onsala

Allen et al 2012, AJ, 143, 97

OH Mini-survey conclusions ...

- OH emission is ubiquitous in the Galaxy:
 - The OH extent resembles HI both in space and velocity.
 - Profiles are faint, $T_B \approx 20-40$ mK, with several peaks:
 - Typical features FWHM \approx 2-3 km/s, separations \approx 7-9 km/s.
 - CO(1-0) appears infrequently in the survey area pixels.
 - If it does, it coincides with one specific OH feature, but <10% of the OH features have corresponding CO emission.
 - OH and HI spectra are approximately linearly related.
 - T_A(OH 1667) ≈ 1.5 X 10⁻⁴ T_B(HI 21-cm)
 - Local HI profiles ($r \le 1$ kpc) appear saturated.
 - But OH continues to increase (suggests HI is optically thick).

Allen et al 2012, AJ, 143, 97

OH as a tracer for the molecular ISM ...

- 18-cm thermal OH has several advantages as a tracer for the molecular ISM:
 - Low optical depth (few radiative transfer issues)
 - Emission is widespread, similar to 21-cm HI
 - OH traces the low-density ISM ($n_{critical} \approx 1 \text{ cm}^{-3}$)
- There is one important disadvantage ...
 - The emission is very faint, 10^{-3} of CO(1-0)
- ... and a minor caution:
 - The 18-cm lines are sensitive to anomalous excitation by intense fluxes of thermal IR photons near HII regions.

Can we connect OH to H_2 ?

- UV absorption lines are a possibility:
 - H₂ absorption measured towards many hot stars within ≈ 2 kpc of the sun, primarily with FUSE:
 - Lyman (B-X) and Werner (C-X) electronic absorption bands lie in the spectral region 844 - 1126 Å
 - OH absorption measurements are starting to appear in the literature (UVES/ESO):
 - A-X electronic absorption line system 3078 3082 Å.

OH - UV absorption

Weselak et.al. 2009, A&A, 499, 783

Weselak et.al. 2009, A&A, 499, 783

$OH - H_2$ relation from UV lines

$OH - H_2$ relation from UV lines

Current state of the data ...

Galactic Target Galactic Call Dist. Z Dist. Ref. N(OH)Ref. $N(H_2)$ Ref. $\times 10^{-13}$ $\times 10^{-20}$ Star HD # longitude latitude _ _ parsec parsec _ HD 23180 (o Per) 160.36-17.74 371 ± 44 -117Mea09 7.8 ± 1.8 R96, see text 4.1 ± 1.5 Sea77 HD 24398 (ζ Per) 162.29 **FR96** Sea77 -16.69 400 ± 64 -118Mea09 4.0 ± 0.4 4.8 ± 1.7 HD 27778 172.76-17.39 234 ± 59 -72Mea09 10.2 ± 0.4 **FR96** 6.2 ± 0.8 Rea02 HD 34078 -2.26-22 6.4 ± 0.5 Bea05 172.08 548 ± 68 Mea09 3.5 ± 0.4 Bea05 HD 110432 301.96 -0.20 392 ± 55 Mea09 4.0 ± 0.6 Wea10 -1 4.4 ± 0.4 Rea02 HD 149757 (ζ Oph) 6.2623.59 222 ± 22 94Mea09 4.1 ± 0.1 Wea09 4.5 ± 0.8 Sea77 HD 152236 343.03 0.87 1581 ± 219 24Mea09 7.6 ± 0.4 Wea10 5.6 ± 1.5 Rea09 HD 154368 1302 ± 200 17.0 ± 1.6 14.5 ± 2.2 349.97 3.2173Mea09 Wea09 Rea02 Partial Totals 5050 ± 325 58.2 ± 2.6 50.5 ± 3.7 -_ ----HD 170740 21.06-0.53 4.7 ± 0.9 7.3 ± 1.3 Rea02 Wea10 Rea02 _ _ Grand Total 62.9 ± 2.8 57.8 ± 4.0 -

Table 1. UV absorption measurements of molecular column densities.

References. — R96: Roueff (1996); FR96: Felenbok & Roueff (1996); Bea05: Boissé et.al. (2005); Wea09: Weselak et.al. (2009); Wea10: Weselak et.al. (2010); Sea77: Savage et.al. (1977); Rea02: Rachford et.al. (2002); Rea09: Rachford et.al. (2009) (b) Reported in Joseph et.al. (1986) according to Felenbok & Roueff (1996); Mea09: Megier et.al. (2009).

The data trickle in ...

Table 1. UV absorption measurements of molecular column densities.

Target Star HD #	Galactic longitude	Galactic latitude	CaII Dist. parsec	Z Dist. parsec	Ref. -	$\begin{array}{c} N(OH) \\ \times 10^{-13} \end{array}$	Ref.	$N(H_2) \times 10^{-20}$	Ref.
HD 23180 (o Per)	160.36	-17.74	371 ± 44	-117	Mea09	7.8 ± 1.8	R96, see text	4.1 ± 1.5	Sea77
HD 24398 (ζ Per)	162.29	-16.69	400 ± 64	-118	Mea09	4.0 ± 0.4	FR96	4.8 ± 1.7	Sea77
HD 27778	172.76	-17.39	234 ± 59	-72	Mea09	10.2 ± 0.4	FR96	6.2 ± 0.8	Rea02
HD 34078	172.08	-2.26	548 ± 68	-22	Mea09	3.5 ± 0.4	Bea05	6.4 ± 0.5	Bea05
HD 110432	301.96	-0.20	392 ± 55	-1	Mea09	4.0 ± 0.6	Wea10	4.4 ± 0.4	Rea02
HD 149757 (ζ Oph)	6.26	23.59	222 ± 22	94	Mea09	4.1 ± 0.1	Wea09	4.5 ± 0.8	Sea77
HD 152236	343.03	0.87	1581 ± 219	24	Mea09	7.6 ± 0.4	Wea10	5.6 ± 1.5	Rea09
HD 154368	349.97	3.21	1302 ± 200	73	Mea09	17.0 ± 1.6	Wea09	14.5 ± 2.2	Rea02
Partial Totals	-	-	5050 ± 325	-	-	58.2 ± 2.6	-	50.5 ± 3.7	-
HD 170740	21.06	-0.53	-	-	Rea02	4.7 ± 0.9	Wea10	7.3 ± 1.3	Rea02
Grand Total	_	_	_	_	- (62.9 ± 2.8) - (57.8 ± 4.0) -

References. — R96: Roueff (1996); FR96: Felenbok & Roueff (1996); Bea05: Boissé et.al. (2005); Wea09: Weselak et.al. (2009); Wea10: Weselak et.al. (2010); Sea77: Savage et.al. (1977); Rea02: Rachford et.al. (2002); Rea09: Rachford et.al. (2009) (b) Reported in Joseph et.al. (1986) according to Felenbok & Roueff (1996); Mea09: Megier et.al. (2009).

... presently the average $N(H_2)/N(OH) \approx 9 \times 10^6$

TF35 - Green Bank

Ron Allen - 3 April 2012

OH in the Galaxy, ca. 2012

- 1. The ratios of the main lines (1665 & 1667 MHz) show no significant departures from LTE.
- 2. Emission and absorption spectra (many LOS) show that:
 - The OH absorbing gas has low $T_{ex} \approx T_{BG} + 0.5$ K ≈ 4 K. Emission from this component is weak and narrow in velocity; it adds little to the total emission on any sight line. (Note that $T_{BG} = T_{GAL} + T_{CMB} \approx 0.8 + 2.7 = 3.5$ K).
 - − OH emitting gas has higher $T_{ex} \approx T_{BG} + (4 10) \text{ K} \approx 10.5 \pm 3 \text{ K}$.
- 3. N(OH)/N(HI) \approx (2.5 5) x 10⁻⁸ in diffuse Galactic clouds.
 - Our ONSALA data gives 4.7×10^{-8} over our mini-survey area.
- 4. $N(H_2)/N(OH) \approx 9 \times 10^6$ from the UV absorption data.
 - New data continue to trickle into the literature.

Summary

- The main OH lines at 18-cm may provide a new way to observe the molecular ISM.
- What is required to convert a measurement of the OH profile integral $T_B(OH)\Delta V$ to $N(H_2)$ includes:
 - The OH excitation temperature $T_{EX}(OH)$
 - Measurable, but we need to understand why the value is so low.
 - Need to model the dependence on the local IR radiation field.
 - The column density ratio $N(H_2)/N(OH)$
 - Measurements in the solar neighborhood are improving.
 - Need to establish how this ratio would change with metallicity.

Imagine a map of OH emission ...

- A map of the 18-cm OH emission of the Galaxy or a nearby galaxy would resemble ...
 - A. The CO(1-0) emission
 - B. The 21-cm HI emission
 - C. The radio continuum emission
 - D. The Far-IR dust emission
 - E. None of the above
 - F. ??

Imagine a map of OH emission ...

- A map of the 18-cm OH emission of the Galaxy or a nearby galaxy would resemble ...
 - A. The CO(1-0) emission
 - B. The 21-cm HI emission
 - C. The radio continuum emission
 - D. The Far-IR dust emission
 - E. None of the above
 - F. Don't know

The end ...