

Some surface measurement work in XAO and high precision surface challenges on QTT

Xin Pei¹, Maozheng Chen¹, Jian Li¹, Kangkang Liu²
1. Xinjiang Astronomical Observatory, CAS
2. Shanghai Jiao Tong University Sep. 21st, 2016

Contents

➢ surface measurement work in XAO

- Photogrammetry
- With phase Holography
- Out Of Focus Holography
- Others
- ➢ high precision surface challenges on QTT
 - Qi Tai 110m telescope
- Conclusion

Nanshan 25m telescope

Upgrade plan

- Mar. Oct., 2014, Antenna structure, reflector, servo control...
- May Oct. , 2015, Antenna rail

Photogrammetry at Nanshan 25m

≻ Aug. 9 – Aug. 31 , 2014

- Chenway Technology Inc. & CETC 39 Institute
- Measurement system
 - Dedicated camera, retro reflector, reference meter, directional gauge, image processing software

Photogrammetry at Nanshan 25m

- 6 measurement and 5 adjustment before feed cabin installation
 - RMS : 5.504-> 8-> 0.847->0.451->0.271->0.177 (mm)
- 2 measurement and 1 adjustment after feed cabin installation
 - RMS : 0.202 ->0.173 (mm)
- RMS under different Elevation

EL	RMS (mm
90°	0.536
38°	0.173
20°	0.489
6°	0.561

The surface deformation is a little larger due to gravitational effect!

Microwave Holography at Nanshan 25m Telescope

- With Phase Holography(Traditional)
- Phase Retrival Holography(Out Of Focus)

Traditional Holography

Amplitude

Phase

IFFT+Numerical Calculation

Phase Retrival Holography--OOF

The Difference between Traditional Holography and OOF

	Traditional Holography	OOF
Measured data	Amplitude + Phase	Amplitude
Measurement error	~100µm, <mark>10µm</mark> (ALMA)	λ/100 (SNR:200:1) For 1.3cm: ~130μm
Resolution	D/N, High, Single panel	Low, for large scale deformation
Time consumption	~2hours	<20mins
Source	Geostationary satellites	Radio sources
Observed elevation	Fixed	Full range
Observed Band	Ku, Ka	K,Ka,Qarbitrarily
Software	Simple	Complex
Hardware	Reference antenna and receiver + Correlator	Removeable sub-reflector

Traditional Holography System Design

Satellite Select

Satellite Name	Orbital Position/ ° E	Ku bandbeacon/MHzHorizontal	Az、El of Nanshan 25m	EIRP /dBW
ChinaSat 10#	110.5	12745	148.2, 35	46
ChinaStar-1	87.5	12749.5	180, 40.2	45
AsiaSat-3	105.5	12749	154.6, 37	44
AsiaPasific-2R	76.5	12749	195.8, 39	45

Feed Installation

Using back shelf of K-band receiver, can move along three dimension, very easy to installation, adjust and remove

Receiver

First plan: Norsat LNB,1007XHBN
 pro's: Internal 11.3GHz LO,
 just need a ext. 10M ref.
 con's: bad phase stability

Receiver

- Revised plan
 - Ext. 11.3GHz PDRO
 - KRATOS CTI
 - Atron LNB
 - Very good phase stability
 - 2.5h test, STDEVP about 1.68deg

Correlator

- ROACH2 board + CASPER library
- ➢ Dual channel, 2G, 8bit sampling
 - band pass sampling—needn't base band converter
 - digital mixer and filter—bandwidth adjustable
 - high precision, good stability

Correlator Test Result

Transmission Link

➢ First plan: fiber optic transmission

- pro's: good phase stability
- con's: bad phase stability due to optical receiver and transmitter temp. variation

ppm 14

Transmission Link

Currently used: coaxial cable

Scan control

XAD

Holo Test result

Holo Test result

Surface error distribution

Before adj(RMS): 0.49mm After adj(RMS): 0.15mm

OOF Technique

- ➢ 2003,Bojan Nikolic, University of Cambridge, U.K.
- Phase retrieval, measure power only of far-field beam pattern on bright astronomical calibrator
- ➤ Make three beam maps, one in focus, two in defocus
 - Parametrisation of surface errors -- Zernike polynomials
 - Solver algorithm -- Levenberg-Marquardt maximum-likelihood
- Adjust coefficients to minimize difference between model and actual beam maps
 - Correction for residual gravitational deformations , and "real-time" thermal deformations
- ➢ For closure active surface control system

- Measure the complete optical aberrations
 - Surface errors + mis-collimation + receiver optics...
- > Fast
 - Several minutes
 - "Near real-time" closure active surface control system
 - Faster when using multi-beam or focal-plane array
- \succ As a function of elevation, time of day, etc
 - Measure the effect of gravity
 - Measure the thermal deformation
- Without extra equipment
 - Makes it easy to interleave with science observations
 - (Zero materials cost)

Out Of Focus Holography at Nanshan 25m

- Feb., 2013, Old 25m system, K band
- ➢ BW: 500MHz
- ➢ Beam: 2.18'
- ▷ Defoucus: \pm 70mm
- Moving pattern: moving back shelf vertically
- Sources: 3C84
- ➢ Tsys: 40K
- ≻ SNR: 100:1
- > Az Length: 30'
- ➢ El Length: 1'*16=16'
- Scanning speed: 3'/s at Az
 (Max Az Speed: 60'/s, Max El Speed: 30'/s)
- Integration Time: 32ms/64ms
- Sampling Time: 32ms/64ms

- Antenna control software(set scan mode and trajectory)
- Data acquisition software
- Noise injection
- OOF software installation(from Bojan)

😣 📀 📀 root@ubu	ntu: /usr/local/bin				
File Edit View Termin	ial Tabs Help				
root@ubuntu: /mn 🗱	root@ubuntu: /mn 🗱	root@ubuntu: /us	sr/ 🗱	administra	itor@ub 🗱
root@ubuntu:/usr/lo bnfitsutils.py bnminlio.pyc bnminlnested.py bnminlutils.pyc ccache-swig django-admin.py fftw-wisdom fftw-wisdom-to-conf gsl-config root@ubuntu:/usr/lo	<pre>cal/bin# ls gsl-histogram gsl-randist implot.py iofits4.py iofits4.py kolmogorovutils.py kvolume libpng15-config libpng-config cal/bin#</pre>	nestedgauss oofcol.pyc oofdataio.py ooffitconv.py oofplot.pyc oofreduce.py oofreduce.pyc pybnfits.py pybnlib.py	pybnmi pybnmi pyoof, pyplot swig t_mini t_unit t_unit t_util	in1.py py pyc .pyc .pyc .pyc im t ts	Alle Edit V Alle Edit V XAOMod import os import os import os import os import os
				-∎-No	ise Injection
39000 -					
38000					
37000 -					
36000 -					
35000 - • •		•			
3210	3220 3230	3240 32	250	3260	3270

- Data pre-processing ightarrow
- FITS file data igodol
- Debaseline

35000

0.0000

12

13

14

15

16

17

18

19

20

500

8.162293E-04

9.335673E-04

8.665396E-04

8.827616E-04

9.149077E-04

-9.305680g-04

-9.459475E-04

3 192186F-0

3.194538E-0

3.339183E-

-3.461255E-04

3.526256E-04

-3.590605E-04

-3.670978E-04

3590798-0

3 342748E-

826810E-

2.600789E-

8.2105408-0

7 959485E-0

5.121715E-

5.121715E-0

5.121715E-

5.121715E-0

S. 121715E-0

5.121715E-03

S. 121715E-03

5.671354E-05

5.844921E-05

6.018519E-05

6.076390E-05

6.134279E-05

-500

0 Δ Cross-elevation (arcsec)

OOF Maps of Nanshan 25m

-10

Zernike polynomials

6) 📀 📀	fv: Binary Table of fitpars.fi	ts[1] in /home	/px/Dow	nloads/oofout/s114-l-db-001/z5/
Fil	e Edit	Tools			
		_ ParName	ParValue	🔄 DoFit	🗌 Pa
5	Select	30A	E	I.	
	All				
	nvert	Modify	Modify	Modify	N
	1	amp	9.132390E-04	1	Illumination amplitude
	2	sigma	3.000000E-01	0	Illumination taper
	3	x0	0.000000E+00	0	Illumination offset in horizontal
	4	y0	0.00000E+00	0	Illumination offset in vertical
	5	z0	0.000000E+00	0	coeff. of Zernike n=0 , 1=0
	6	z1	-1.226602E-01	1	coeff. of Zernike n=1 , l=-1
	7	z2	-6.266849E+00	1	coeff. of Zernike n=1 , l=1
	8	z3	1.081935E-01	1	coeff. of Zernike n=2 , 1=-2
	9	z4	-9.170491E-02	1	coeff. of Zernike n=2 , 1=0
	10	z5	1.864050E-01	1	coeff. of Zernike n=2 , 1=2
	11	z6	-1.951748E-02	1	coeff. of Zernike n=3 , 1=-3
	12	z7	-1.095982E-01	1	coeff. of Zernike n=3 , l=-1
	13	z8	-6.867645E-02	1	coeff. of Zernike n=3 , 1=1
	14	z9	3.466250E-02	1	coeff. of Zernike n=3 , 1=3
	15	z10	-6.291842E-02	1	coeff. of Zernike n=4 , l=-4
	16	z11	-1.557280E-02	1	coeff. of Zernike n=4 , 1=-2
	17	-10	4 4404000 00		seeff of Remails of 4 1 0

Aperture phase and amplitude distribution

/opt/oof/oof_backup/oofout/XAOModelTest=000/z5/aperture=notilt.fits

Other methods research

Active surface de-focus algorithm

- A sort of phase retrieval algorithm
- move main surface for de-focus
- Add a ring error in main surface

- 260km from Urumqi, 202km baseline from Nanshan
- 110m, fully moveable, 150M~117GHz,Active reflector
- Surface accuracy RMS: <0.2mm</pre>
- Blind pointing error: <5"</p>

Key Point for QTT High Precision Surface

Design

- Decrease geometric approximate error, homology, partitioning, gravity and thermal effect simulation
- ➤ Machining
 - Promote machinng precision, technology and machine, factory testing

➢ Installation

- 3 step, theodolite coarse adjust → photogrammetry tiny adjust → holography fine adjustment
- Compensation
 - closed loop control active surface system, FEM model, real time surface measurement, active sub-reflector...

- Some surface measurement methods were researched, experimented in XAO for QTT preresearch
- System is easy to build, but hard to get high measurement precision
- Real time surface measurement challenge and chance
 - Very fast, Any elevation
 - Low resolution, for large scale deformation
 - Feedback, for closed loop active surface compensation
 - Collaboration on the new methods research

Thank you !