

NRAO Metrology and Control of Large Telescopes

Holographic Measurements and Performance of the NASA-JPL-DSN new 34-m BWG Antenna

September 20 - 24, 2016

NRAO Green Bank, West Virginia, USA

David Rochblatt

Jet Propulsion Laboratory, California Institute of Technology

Graham Baines and Tim Olin

CSIRO / CDSCC, Australia

Manuel Vazquez ISDEFE / MDSCC, Spain

© 2016. All rights reserved.

NRAO Metrology and Control of Large Telescopes

http://descanso.jpl.nasa.gov/monograph/series10/08_Reid_chapt+8.pdf

DSN 34-meter Beamwaveguide (BWG) Antenna

http://descanso.jpl.nasa.gov/monograph/series10/08_Reid_chapt+8.pdf

Antenna Holography Measurement Group (AHMG)

- General physical description: 2.8-m reference antenna, Ku-Band feeds, LNA's, down converters, IF amplifiers, PLL, back-end receiver, computer control for DAQ and DAP, H/W and S/W
- The MAHST can service any of the DSN antennas:
 - Receiver design enables locking and tracking of Ku-Band satellite CW beacon in the 10.6-12.6-Ghz frequency band

- Antenna surface error maps

- Antenna aperture amplitude illumination maps
 - Panel setting screw adjustment listing output
- Predicted antenna surface rms after panel setting

- Subreflector position correction

- Antenna gravity deformation characteristics and analysis
 - Servo Performance Characterization
 - Constructed feed phase function

NRAO Metrology and Control of Large Telescopes

Installing the AHMG Front-End at DSS-36 F1

NRAO Metrology and Control of Large Telescopes

Installing the AHMG Front-End at DSS-35 F3

DSS-36: Summary of final Holography RMS (mm) Results

Mirror	QA RMS	RMS Spec.	Max. Deviation	Min. Deviation		
SR	0.069	0.127	-0.125			
M1	0.041	0.100	0.087	-0.160		
M2	0.072	0.100	0.266	-0.186		
М3	0.080	0.100	0.222	-0.254		
M4	0.048	0.100	0.144	-0.126		
M5	0.089	0.100	0.260	-0.264		
M7	0.016	0.100	0.045	-0.053		
RSS (BWG - SR)	0.154	Predicted RSS of BWG mirrors error excluding the Subreflector				
RSS (BWG+SR)	0.169	Predicted RSS of BWG mirrors error including the Subreflector				
RSS (Main+BWG +SR)	0.196	Predicted Ultimate surface measured form F3				
RSS (Main+SR)	0.121	Predicted Ultimate surface measured form F1				
Main + SR F1	0.266	As set by photogrammetry & measured by Holography				
Main + SR F1	0.192	As set by & measured by Holography				
F3 Measured	0.251	From Holography Night-Time				

DSS-36 Predictions & Results Prior & After Expedition Photogrammetry predicted at 0.240-mm versus actual 0.266-mm

DSS	Case	Hi-Res (mm)	Med-Res (mm)	Low-Res (mm)	41x41 Holo (mm)	
After Photogrammetry & Before Holography Panel Settings						
35	Holo+SR	0.261 ⁽²⁾	0.209	0.179	0.194	
35	Holo-SR	0.243	0.187	0.152	0.170 ⁽¹⁾	
35	Holo-SR	100%	77%	62.5%	70%	
DSS-36 Predictions Versus As Found RMS						
36	Holo -SR	0.229 ⁽²⁾	Computed	/ Predicted	0.160 ⁽¹⁾	
36	Holo+SR	0.240 ⁽³⁾	Computed / Predicted 0.1		0.160	
36	Holo+SR	0.266	Set by Photo-G & measured by Holography			
36	Holo+SR	0.192	Set & measured by Holography			

- (1): Predicted Photogrammetry rms value (by holography) based on 1716 samples near panel adjusters, equivalent to 41 X 41 holography array
- (2/3): SR rms: 0.093-mm for DSS-35 and 0.069-mm for DSS-36

NRAO Metrology and Control of Large Telescopes

DSS-36 F1 Surface Before / After Holography Gain improvement due to surface alignment at Ka-Band = 0.3-dB

NRAO Metrology and Control of Large Telescopes

Ultimate RMS Surface: 0.127-mm F1 / 0.198-mm F3, Revealing Individual panels imperfections, 10-micron resolution

Summary Results for DSS-36

Initial antenna normal rms as set by photogrammetry, (high-resolution, 33-cm) for the 95% dish diameter was 0.266-mm. The 97% of the dish diameter rms was 0.332-mm

Final antenna normal rms post holography, (high-resolution, 33-cm) for the 95% dish Diameter is 0.192-mm. The 97% of the dish diameter rms is 0.203-mm

This improvement in panel alignment (alone) corresponds to 4% increase in efficiency at Ka-Band, or +0.27-dB, and enabling antenna aperture efficiency at Ka-Band of 66%. The highest achieved to date in the DSN.

More than 200 panels were adjusted Zero-set the azimuth encoder Confirmed the antenna uniform aperture amplitude illumination, and hence its correct dual-shaped cassegrain design Aligned subreflector Noticed additional diffraction pattern in the data due to the quad noise shields

NRAO Metrology and Control of Large Telescopes

DSS-36 Far-Field Pattern after Subreflector alignment In the Z and Y axes but not X-axis. Showing the far-field Pattern skew to the left in the plot above

DSS-36 Far-Field Pattern after Subreflector alignment In the Z, Y,and X axes. Showing the far-field Pattern symmetry

DSS-35 Complex (Amplitude and Phase) Far-Field 2-D Pattern Shown with 102-dB Dynamic Range (AHMG) at Ku-Band (12.75-GHz) exhibiting well behave symmetric pattern

NRAO Metrology and Control of Large Telescopes

DSS-35 Far-Field Pattern Azimuth Cut at Ku-Band (12.75-GHz) with Even and 18-dB Down Sidelobes, Indicating excellent Antenna Performance: <u>Dish Surface and Subreflector Alignment from F1 Focus</u>

DSS-35 Far-Field Pattern Elevation Cut at Ku-Band (12-GHz) with Even Sidelobes and 18-dB Down Confirming excellent Antenna Performance: <u>Dish Surface and Subreflector Alignment from F1 Focus</u>

DSS-36 F1 versus F3 Holography

F3 Holography 0.251-mm rms to the 95% which is RSS diff = 0.259-mm (97-micron per mirror Ave)

After Holography Panel Settings The rms for the F3 illumination diameter (95%) is **192-micron**

36-16106-0737 / F3

Deformation Signatures from F3 Correlation with M5 Deviations

NRAO Metrology and Control of Large Telescopes

F3 Holography High-Resolution Day-time 36-16123-0035: Rms = 0.288-mm After Holography Panel Settings rms = 0.203-mm The rms for the F3 illumination diameter (95%) is **192-micron**

Dish as found F1 high-resolution

Showing energy distribution across the dish skew to the right. This will later be confirmed as a result of a subreflector tilt and translation errors.

After Subreflector Tilt and Translation Corrections

Noticed the improvement in the symmetry of the energy distribution across the antenna main dish

NRAO Metrology and Control of Large Telescopes

Azimuth Far-Field Pattern Before / After Subreflector Tilt and Translation Corrections via Holography

Noticed a dramatic improvement in the Far-Field Amplitude Sidelobes formation

Az FF Before SR Tilt and translation Corrections

Az FF AFter SR Tilt and translation Corrections

Elevation Far-Field Pattern After Subreflector Translation Correction via Holography

DOY 104, 2016 Final Elevation Wide Angle (4-deg) Cut

NRAO Metrology and Control of Large Telescopes

F1 versus F3 Aperture Illumination Function

Slight Shift in Energy Distribution noticed at F3

NRAO Metrology and Control of Large Telescopes

DSS-35 Antenna Aperture Amplitude Illumination Comparison between F1 Right and F3 Left

F3 Day Time DOY 091 Slightly Under Illuminated

F1 Night Time DOY 077

DSS-36 Zenith Noise Temperature

FREQUENCY	CONFIGURATION	POLARIZATION	LINEARITY (%)	T-AMW, ZENITH, ACME (kelvin)	Req. AMW FRD (kelvin)
32.0 GHz	X/X/Ka	RCP	-0.97	13.5	<=18.7
32.0 GHz	X/X/Ka	LCP	-0.07	12.5	<=18.7
8.450 GHz	X/X/Ka	RCP	-0.63	12.73	<=18.5
8.450 GHz	X/X/Ka	LCP	-0.12	14.062	<=18.5
2.295 GHz	S –low noise	RCP	0.43	20.74	<=24.4
2.295 GHz	S/X - Diplexer	RCP	0.43	36.3	<=40.0

DSS-36 Efficiency and G/T peak performances in Vacuum

Entery	Frequency (Ghz)	RMS F1 (mm)	Efficiency (%)	Tamw (k)	G/T, F3 (dB-k)
Photogrammetry	32.00	0.266	62.03	13.5	67.76
Current Holography	32.00	0.192	66.00	13.5	68.02
Current Holography	8.420	0.192	75.72	12.73	57.27
Current Holography	2.295	0.192	68.9	36.3	41.04

DSS-36 Efficiency at Ka-Band Exhibiting peak Aperture efficiency of 66% at the rigging angle of 45.5-deg Elevation Gain Roll-Off at the low / high elevations is 0.87-dB

Ka-Band (KPLR) Shadow track DSS-36 vs -35 and -34 with +0.7-dB Pc/No Advantage for DSS-36

X-Band CAS Shadow track DSS-36 vs -35 with +0.25-dB Pc/No Advantage for DSS-36

DSS-36 Shadow tracks at X-Band against DSS-35 Measuring approx. 2-kelvin lower SNT (agreeing with predictions)

DSS-34 / DSS-36 S-Band SOHO Shadow Pass DOY 233 2016

Transmit & Receive Horizon Masks Mask Determination - 1

1. The transmit mask is defined as a 2.5 Kelvin increase in SNT above a "conventional" tipping curve – (Tamw + Tsky + cosmic microwave background). ITU regulations stipulate a minimum of 10.5 degrees elevation for a 20kW transmitter.

2. The receive mask is defined as a 50 Kelvin increase in SNT above the same "conventional" tipping curve - ~ 4db loss in link margin.

NRAO Metrology and Control of Large Telescopes

Transmit & Receive Horizon Masks Mask Determination - 2

DSS-36 X-Band RCP System Noise Temperature Rise Above the "Tipping Curve" June 2016

Transmit / Receive Horizon Masks

ATMC Implementation

Principle of RF Beam Measurement

By calibrating the antenna RF beam pattern, the pattern can then be used to determine position change based on measured power. During these tests an "aim" point approximately 10dB down from the boresight position and on the incoming side from the step starting position was chosen to characterize the response. This resulted in about +/-15 mdegs of working range and the best signal strength sensitivity to position change.

DSS-35 Step Response Test Results Summary

	Servo Controller Type											
DSS-35	LLL					LQG						
Servo and RF Beam Step Response	Encoder Response			RF Beam Response		Encoder Response			RF Beam Response			
Tests 18 th March 2014	Over-shoot (mdegs)	Within +/- 3% of Step Size (Seconds)	Within +/- 0.6 mdegs of Final Position (Seconds)	Over-shoot (mdegs)	Within +/- 3% of Step Size (Seconds)	Within +/- 0.6 mdegs of Final Position (Seconds)	Over-shoot (mdegs)	Within +/- 3% of Step Size (Seconds)	Within +/- 0.6 mdegs of Final Position (Seconds)	Over-shoot (mdegs)	Within +/- 3% of Step Size (Seconds)	Within +/- 0.6 mdegs of Final Position (Seconds)
Azimuth Step of +100 mdegs	7.9	1.71	4.04	10.5	1.67	2.98	15.8	4.76	6.66	16.1	4.65	6.55
Azimuth Step of -100 mdegs	-8.2	1.77	3.68	-9.1	1.68	3.98	-15.8	4.74	6.60	-14.8	4.50	5.85
Elevation Step of +100 mdegs	9.2	2.05	4.44	10.1	2.12	5.88	10.2	5.53	5.75	12.5	5.74	14.25
Elevation Step of -100 mdegs	-9.2	2.09	4.48	-9.3	1.72	4.08	-10.2	5.25	7.19	-11.6	5.45	9.98

Note: The "Within +/- 0.6 mdegs of Final Position" data reported here is included because this is the pointing tolerance if the step had been 20 millidegrees (+/- 3% of 20 millidegrees).

DSS-35 LLL Step Response Plots

09/19/2016

NRAO Metrology and Control of Large Telescopes

DSS-35 LQG Step Response Plots

DSS-35 Servo Step Response Tests

As part of the DSS-35 antenna positioning system performance evaluation, servo system step response tests were conducted using both of the available positioning controller types (LLL and LQG). The evaluation was conducted by looking at both the positioning loop (angle encoder) response and the RF beam response as derived from "side-of-main-beam" tracking of a strong geosynchronous spacecraft beacon signal. The later technique used an adaptation of the DSN holography equipment set to gather the response data and required considerable postdata processing to derive the results.

NRAO Metrology and Control of Large Telescopes

Pointing Models A single 4th Order Pointing Model servicing All Frequencies and Polarizations at X / Ka-Bands, with Performance better than 4.0 / 8.0mdeg MRE respectively for the X/ Ka-Bands

Pointing Models (Con't) Performance on DOY 248, 2014 during a CAS pass MRE = 2.51-mdeg

Pointing Models Operational Performances at Ka-Band in 2014:

CAS DOY 248:	2.51-mdeg MRE
KEPL DOY 233 :	3.4-mdeg MRE
CAS shadow tracks on DOY 137 and 159:	3.5-mdeg MRE

© 2016. All rights reserved.