

19..24-Sep-2016

IRAM 30m Telescope Control

Juan Peñalver

Deputy Station Manager Telescope Engineer

IRAM: Institut de Radioastronomie Millimétrique

Three countries: Germany, France and Spain

Two observatories:

interferometer of Plateau de Bure in France single dish antenna of Pico Veleta in Spain (also called 30m antenna)

<u>30m coordinates</u> (WGS84):

Green Bank, Metrology and Control of Large Telesc.

Latitude North	37º 03' 58"
Longitude West	03º 23' 34"
Height	2904.0 m

1

The IRAM-30m Antenna

Characteristics:

۲	Parabolic Antenna with Altazimuth Moun	nt
۲	Diameter	30 m
٩	Operating Frequency	73 to 375 GHz
	(wavelength	4.1 to 0.8 mm)
۲	Focal Length	10.5 m
٩	Hyperboloidal Subreflector	2 m
۲	Eccentricity	1.0746
۲	Cassegrain Magnification	27.8
۲	Number of Panels (honeycomb)	420
٢	Weight	800 tons
۲	Azimuth Range	60° to 460°
۲	Elevation Range	0° to 90°
٢	Maximum Velocity	1º/sec
۲	Total r.m.s. of the surface	60 µm
۲	Maximum Wind Speed when observing	65 km/h
٠	Maximum Wind Speed supported	200 km/h
•	Constructed in steel	
•	Quasi-Homology Design	
٩	Cassegrain with Nasmyth optics	

19..24-Sep-2016

The IRAM-30m Antenna

Topics to review:

- Antenna Thermal Control (gain elevation curve)
- Antenna Servo Control
- Pointing Model

19..24-Sep-2016

• The Antenna was regulated in temperature with the following resources:

Conoral	Cooling Compressor	22 Kw
General	Glycol Pumps	2 x 1.5 Kw
	Glycol Pump	1.5 Kw
Reflector Structure	Ventilators	5 x 3 Kw
Structure	Heaters	5 x 6 Kw
Quadrupod	Glycol Pump	7.5 Kw
Yoke-Membrane		
CounterWeights		

- 160 temperature sensors (type pt100) are distributed around the Antenna to monitor temperatures every 5 minutes
- Regulation of temperature is better than 1 K respect to the master temperature

19..24-Sep-2016

Radioastronomie Millimétrique Block 3 (moves in azimuth antenna and elevation) membrane Block 2 (moves in azimut Block (fixed to ground) 19..24-Sep-2016

Iram

Institut de

In the antenna intial design only the steel frame above the membrane (BUS) was regulated in temperature

- BUS was typically between 4° and 6° above ambient temperature
- CounterWeights at ambient temperature

consequence: STRONG ASTIGMATISM!

• The Antenna is regulated in temperature with the following resources:

Cananal	Cooling Compressor (off)	22 Kw
General	Glycol Pumps	2 x 1.5 Kw
-	Glycol Pump	1.5 Kw
_Reflector Structure	Ventilators	5 x 3 Kw
Structure	Heaters	5 x 6 Kw
Quadrupod	Glycol Pump	7.5 Kw
-Yoke-Membrane	Ventilators (2002)	4 x 0.5 Kw
	Ventilators (2002)	2 x 0.5 Kw
Counter weights	Heaters (2002)	4 x 3 Kw

- 160 temperature sensors (type pt100) are distributed around the Antenna to monitor temperatures every 5 minutes
- Regulation of temperature is better than 1 K respect to the master temperature

19..24-Sep-2016

conclusions:

- BUS temperature shows day-night effect, typically between -1°C and +2°C
- CounterWeights are controlled 1º below the Reference Temperature
- **Q** Reference temperature ~ 6° above outside air temperature
- Standard Deviation of BUS temperatures is below 0.7°C

Power distribution collected by the antenna:

	86 GHz	145 GHz	210 GHz	280 GHz	340 GHz
Aperture Efficiency	0.62	0.56	0.47	0.36	0.27
Main Bean Efficiency	0.806	0.726	0.608	0.468	0.352
1 st Error Beam (large scale, 6 m)	V	0.015	0.035	0.029	0.028
2 nd Error Beam (panel misalign. 1.5 m)	0.064	0.075	0.095	0.091	0.118
3 rd Error Beam (panel frame grid 0.4 m)	0.058	0.057	0.071	0.125	0.145
Error Beams	0.122	0.147	0.200	0.245	0.291
MBE + Error Beams	0.927	0.873	0.808	0.713	0.643
Forward Efficiency	0.95	0.93	0.94	0.88	0.81
Forward Scattering and Spillover	0.023	0.057	0 132	0.167	0.167
(Feff – MBE – Error Beams)	0.025	0.037	0.132	0.107	0.107
Rear Scattering and Spillover	0.05	0.07	0.06	0.012	0.19

considerations and conclusions:

- Over lost due lo the limitations of the antenna thermal control goes into the 1st Error Beam and partially into the Forward Scattering
- The antenna power lost due to the limitation of the thermal control is at the lower frequencies less than 3 % and at the higher frequencies less than 20 %

Gain Elevation Curve

- We measure the Aperture Efficiency at several frequencies
- We use the Ruze formula to calculate the surface rms
- We repeat the previous two steps at several elevations
- From the surface rms we recalculate the gain elevation curve

Green Bank, Metrology and Control of Large Telesc.

19..24-Sep-2016

11

Antenna Servo Control

- Main Antenna Axes, Azimuth and Elevation
- Subreflector
- Wobbling Subreflector

Antenna Servo Control, azimuth and elevation

Iram Institut de Radioastronomie Millimétrique

Institut de Radioastronomie Millimétrique

Antenna Servo Control, azimuth and elevation

Antenna Motors and Servoamplifiers:

- The antenna is moved by two groups in Elevation and one group in Azimuth
- Each group has two motors, one pushing and the other pulling for antibackslash
- **•** Elevation motors develop a maximum power of 10 Kw each
- Azimuth motors develop a maximum power of 20 Kw each
- Motors are DC type with brushes and high precision in the positioning
- Servoamplifiers to drive the DC motors are of the type "pulse width modulation"
- **O** Demultiplication factor between motors and antenna is 15000

Gearboxes:

- New Gearboxes installed between 2010 and 2012
- Each Gearbox has three planetary systems
- Azimuth Gearbox: demultiplication: 1164 stiffness: 6 x 10E7 Nm/rad
- Elevation Gearbox: demultiplication: 718 stiffness: 2 x 10E7 Nm/rad

19..24-Sep-2016

Institut de Radioastronomie Millimétrique

Antenna Servo Control, azimuth and elevation

Antenna Encoders

- Four incremental encoders Heidenhain ROD 800
- 36000 lines per revolution
- Absolute accuracy < 1"

Motor Encoders

- Four incremental encoders ROD456
- 1800 lines per revolution

<u>IK320A</u>

- VME modules used to read the antenna axis encoders ROD800
- Two axes encoders read with each VME IK320A module
- Reading of both axis in 800 µsec.
- Neither preamplifier nor correctors boards are necessary
- Repetition of encoder reset better than 0.1"
- Axis position reading with a resolution of 36"/4096 = 0.0088"
- Possibility of compensation to improve the sinusoidal signal shape

<u>IK340</u>

- VME module used to read the antenna motor encoders ROD456
- Four motor encoders read with each VME IK340 module
- Reading of the four axis in 20 μ sec.
- No preamplifier board is necessary
- Motor position reading with a resolution of (720''/256)/15000 = **0.0002''** (of antenna movement)

Encoders connection

19..24-Sep-2016

Figure 4 - Cascade controller – VME implementation

Characteristics of the servo loop

- Interrupt latency 128 / sec
- Two servo loops, one for position and other for velocity
- Only proportional and integral components
- **G** Friction compensation

19..24-Sep-2016

Antenna Servo Control, subreflector

3 Vertical + 3 Horizontal Spindles permit the Subreflector shift and tilt
On top of the previous movements the Subreflector can also be rotated

Antenna Servo Control, subreflector

Homology corrections: 35000 30000 25000 X,Y,Z(microns) phiX,phiY,phiZ (0.000f) 20000 15000 10000 5000 0 -5000 -10000 0 10 20 30 40 50 60 70 80 90 Antenna Elevation (°) ← X – Y – ∠ Z – → phiX – → phiY – ← phiZ

The subreflector movements to apply homology corrections when moving the antenna elevation from 10° to 80° are:

- vertical shift (X) about -25 mm
- axial shift (Z) about +6 mm
- **vertical inclination (phiY) about +0.11**°

Green Bank, Metrology and Control of Large Telesc.

Institut de

Radioastronomie Millimétrique

Antenna Servo Control, subreflector

Subreflector steps in z-focus and elevation:

19..24-Sep-2016

Green Bank, Metrology and **Control of Large Telesc.**

Antenna Servo Control, wobbling subreflector

Green	Bank,	Metro	logy	and
Cont	rol of I	Large	Teles	5C.

19..24-Sep-2016

Iram Institut de Radioastronomie Millimétrique

Pointing Model

parameter	Type of error	V _i (Az,El)	H _i (Az,El)
P ₁	Zero offset of Azimuth encoder	0	cos(El)
P ₂	Collimation error	0	1
P ₃	Inclination of Elevation axis	0	sin(El)
P ₄	Inclination of Azimuth axis (toward north)	- sin(Az)	cos(Az) sin(El)
P ₅	Inclination of Azimuth axis (toward west)	cos(Az)	sin(Az) sin(El)
P ₆	Declination error of the source	cos(Az) sin(El)	sin(Az)
P ₇	Zero offset of the Elevation encoder	1	0
P ₈	Gravitational bending	cos(El)	0
P ₉	Gravitational bending	sin(El)	0

in addition we apply Nasmyth offsets related to the position of the receivers

In **BLUE** color, parameters that usually remain constant

In GREEN color, parameters determined with inclinometers. They reflect the tilt of the azimuth axis with respect to the astronomical zenith

In **RED** color, parameters that still have to be determined by astronomical measurements. They reflect deformations on top of the azimuth bearing (P_3 and P_7) and on the antenna frame (P_1 and P_2)

Modelling of the true angle offset:	True angle offset:
$\Delta V = \sum [P_i V_i(El,Az)]$	$\Delta \mathbf{V} = \mathbf{\Delta El}$
$\Delta H = \sum [P_i H_i(El,Az)]$ with i=1,2,,9	$\Delta \mathbf{H} = \mathbf{\Delta} \mathbf{A} \mathbf{z} \cos(\mathbf{E} \mathbf{l})$

1924-Sep-2016	Green Bank, Metrology and Control of Large Telesc.
	control of Edige Telesei

Pointing Model

Institut de Radioastronomie Millimétrique

Contributions of the different antenna Blocks:

Origing of the Pointing Model Parameters		
Block 3 (moves in azim. and elev.)	P1, P2	
Block 2 (moves in azimuth)	P3, P7	
Block 1 (fixed to ground)	P4, P5	

 In the antenna intial design only the frame above the membrane was regulated intemperature

19..24-Sep-2016

Pointing Model

Institut de Radioastronomie Millimétrique

Contributions of the different antenna Blocks:

Origing of the Pointing Model Parameters		
Block 3 (moves in azim. and elev.)	P1, P2	
Block 2 (moves in azimuth)	P3, P7	
Block 1 (fixed to ground)	P4, P5	

- In 2002 the antenna temperature control below the membrane and counterweights was also included
 Parameters P1 P2 P3 and P7 are
- Parameters P1, P2, P3 and P7 are more stables
- There is still a winter-summer fluctuation of P7 up to 10"

19..24-Sep-2016

Since 2002, after installing the full temperature control of the antenna, the pointing model parameters are more stable

19..24-Sep-2016

Pointing Model

Green Bank, Metrology and Control of Large Telesc.

26

19..24-Sep-2016

Pointing Model

Institut de Radioastronomie Millimétrique

Applied Geomechanics 755-1150 Inclinometer

Since 2003 the installation of inclinometers on top of the azimuth axis permit the determination of P4 and P5 automatically every time we move the antenna more than 60° in slew rate in azimuth

19..24-Sep-2016

Pointing Model

Institut de Radioastronomie Millimétrique

19..24-Sep-2016

19..24-Sep-2016

Institut de Radioastronomie Millimétrique

Time Use at the 30m-Antenna

We keep a log of how the time is used at the observatory with an entry by the operator every two hours

3.22%

Used Tech. Time

14.84%

Green Bank, Metrology and Control of Large Telesc.

Used Observ. 63.52%

IRAM 30m Telescope

Thanks for your attention !

19..24-Sep-2016