Performance measurements and models of Tianma Radio telescope(TM65m)

Jinqing Wang, Michael Kesteven, Rongbing Zhao, Jian Dong, Weiye Zhong,Bing Li, Qinghui Liu, Zhiqiang Shen

Shanghai Astronomical Observatory

2016 September 20 Green bank

Efficiency/system noise temperature/SEFD

Surface measurement by holography and gravity model

Pointing VS efficiency

Pointing error/beam width	0.1	0.2	0.3	0.4	0.5	
Loss of gain	0.027	0.105	0.22	0.36	0.5	

Pointing error main comes from:

- 1) Mechanical error [model,titlemeter]
- 2) Encoder accuracy and stability
- 3) Servo system
- 4) Sub_reflector XY offsets [model,PSD]
- 5) Active surface[model]
- 6) Temperature [model,titlemeter,sensor,PSD]
- 7) Wind[PSD,half_power track]

Pointing Model measurement

Delt_AZ= C1+ tan(E0)*cos(A0)*C3 + tan(E0)*sin(A0)*C4 + tan(E0)*C5-1/cos(E0)*C6

Delt_EL= C2- sin(A0)*C3+ cos(A0)*C4+ cos(E0)*C7+ C8/tan(E0)

K band pointing model (sub_reflector enable)

Sub_reflector Model

Tested model VS FEM simulation

Efficiency & Tsys measurement

C band(4GHz-8GHz) system noise temperature

C band performance Sub_reflector fixed @4.8GHz 20MHz Bandwidth

C band performance Sub_reflector Enable @4.8GHz 20MHz Bandwidth

X band performance Sub_reflector fixed @8.75GHz 20MHz Bandwidth

Sub_reflector Enable @8.75GHz 20MHz Bandwidth

Ku band performance Sub_reflector Enable @15.6GHz 20MHz Bandwidth

Ka band performance Sub_reflector Enable @31.1GHz 20MHz Bandwidth

L/C/S/X/Ku/Ka bands performance

	Sub	-	T	DREU		归一化 Poly(aX³+bX²+cX+d)				
Band	_reflector	Frequency	Isys		Efficiency max	(X=Elevation/degree)				
			@Zenith	(K /JY)		а	b	c	d	
L(V)	fixed	1488	32	0.768	0.64@El=46.4	1.6E-6	-3.6247E-4	0.02326739	0.54048039	
L(H)	fixed	1488	30	0.796	0.66@El=43.4	2.05E-6	-3.565E-4	0.01929101	0.66628028	
S(LCP)	fixed	2265	50	0.680	0.57@E1=9.463	5.0E-8	-9.83E-6	-0.00143989	1.01446614	
S(RCP)	fixed	2265	52	0.709	0.59@ E1=9.463	7.0E-8	-1.197E-5	-0.00158865	1.01604279	
C(LCP)	move	4800	20	0.771	0.64 @El=48.7	6.4E-7	-1.1908E-4	0.00705175	0.86551495	
C(RCP)	move	4800	20	0.785	0.65 @El=47.1	6.8E-7	-1.2899E-4	0.00759555	0.85688260	
C(LCP)	move	6425	19	0.719	0.60 @El=54.7	3.0E-8	-3.028E-5	0.00303171	0.91954072	
C(RCP)	move	6425	19	0.708	0.59 @E1=54.7	1.5E-7	-4.839E-5	0.00395895	0.90378113	
C(LCP)	move	7500	17	0.764	0.64 @El=55.3	1.7E-7	-6.686E-5	0.00585544	0.85217763	
C(RCP)	move	7500	17	0.715	0.60 @E1=56.9	9.0E-8	-5.493E-5	0.00537263	0.85531771	
X(LCP)	move	8400	33	0.789	0.66 @El=60.1	-1.99E-6	2.4240E-4	-0.00757999	1.01166495	
X(RCP)	move	8400	31	0.782	0.65 @El=60.9	-1.99E-6	2.4415E-4	-0.00763073	1.00900602	
Ku(LCP)	move	15600	25	0.807	0.67@ E1=50.877	-5.13E-6	0.00039693	-0.00038984	0.66734680	
Ku(RCP)	move	15600	30	0.850	0.71@ El=51.738	-4.71E-6	0.00030573	0.00616772	0.51438883	
Ka(LCP)	move	31100	80	0.560	0.47@ E1=48.211	-6.14E-6	0.00022601	0.02134805	0.13347055	
Ka(RCP)	move	31100	70	0.563	0.47@ E1=48.937	-6.35E-6	0.00026943	0.01925549	0.15628293	

K band dual beam Tsys/Trec/Tsky

K band Beam1–RCP @19. 45GHz 16y8m25 cloudy

Q band Beam1 performance @43GH 2016y8m6 cloudy

Microwave Holography on TM65m for surface error measurement

Phase coherent satellite ____ high accuracy pannel setting radio source (VLBI)___ gravity deformation

Phase Retrieve

OOF _____ gravity deformation & real-time detection [See Dr. JianDong's poster]

Asia4 Ku beacon (12.25GHz)

Far Field Amplitude and Phase

D (m)	65	63	60	58	56	(UT)
RMS(mm)	0.274	0.267	0.257	0.251	0.243	16y1m19 09:16-11:40
	0.278	0.270	0.263	0.260	0.255	16y1m19 14:44-17:06
	0.288	0.281	0.273	0.263	0.256	16y1m27 11:24-13:54

Measurement Error

Repeated measurement error by 3 times independent tests

D (m)	65	63	60	58	56	53	50
RMS (mm)	0.132	0.121	0.113	0.109	0.106	0.099	0.093

Ka efficiency improvement @31.15GHz

Ka 31.15GHz efficiency improvement in theory: 36% (0.58mm) -> 54% (0.3mm)

Main Surface Gravity Model Measurment by Short Baseline(~6km) VLBI

Radial sweep scans and correlation

One pattern: ~ 20minutes Resolusion: ~ 3m Meaure error: ~ 0.17mm Radio source: 3C84 Integeration time: 1second Freq&Bandwidth: 8.4GHz&16MHz

Gravity model simulation and measurement

left: FEM simulation files

'E:\65	im\主动面\	促动器订	鄅整量	(原始)	\5°	仰角促动	器调整量	.txť	;
'E:\65	im\主动面\	促动器订	副整量	(原始)	\10°	仰角促动	り器调整量	1.txt	1
'E:\65	ím\主动面\	促动器订	那整量	(原始)	\15°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	副整量	(原始)	\20°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	副整量	(原始)	\25°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	那整量	(原始)	\30°	仰角促动	り器调整量	1.txt	1
'E:\65	ím\主动面\	促动器订	副整量	(原始)	\35°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	酮整量	(原始)	\40°	仰角促动	り器调整量	1.txt	` ;
'E:\65	im\主动面\	促动器订	副整量	(原始)	\45°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	副整量	(原始)	\55°	仰角促动	り器调整量	1.txt	1
'E:\65	ím\主动面\	促动器订	那整量	(原始)	\60°	仰角促动	り器调整量	1.txt	1
'E:\65	ím\主动面\	促动器订	副整量	(原始)	\65°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	副整量	(原始)	\70°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	副整量	(原始)	\75°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	郦整量	(原始)	\80°	仰角促动	り器调整量	1.txt	` ;
'E:\65	im\主动面\	促动器订	鄅整量	(原始)	\85°	仰角促动	り器调整量	1.txt	1
'E:\65	im\主动面\	促动器订	鄅整量	(原始)	\90°	仰角促动	り器调整量	1.txt	1

right: measurement file

'D:\share\2015y8m20\1453\Activesurface.txt';	17.6
'D:\share\2015y8m20\1524\Activesurface.txt';	22.9
'D:\share\2015y8m20\1555\Activesurface.txt';	28.1
'D:\share\2015y8m20\1626\Activesurface.txt';	33.9
'D:\share\2015y8m20\1657\Activesurface.txt';	39.4
'D:\share\2015y8m20\1728\Activesurface.txt';	45.4
'D:\share\2015y8m20\1759\Activesurface.txt';	51.4
'D:\share\2015y8m20\1830\Activesurface.txt';	57.1
'D:\share\2015y8m20\1901\Activesurface.txt';	62.4
'D:\share\2015y8m20\1932\Activesurface.txt';	68.3
'D:\share\2015y8m20\2003\Activesurface.txt';	73.3

EL

i.

30

1

20

-1.5

1.5

0.5

0

-0.5

-1

-1.5

-2

1.5

30 ÷

20 8-9

10 -

0

-10

-20 -----

-30

-30

; -10

0

10

i

-20

83

0.4

Sub-reflector XYZ position derived from holography aperture phase VS the sub-reflector model constructed from amplitude sweeps

conclusions

- All receivers have been installed. K and Q bands need more testing for the weather and pointing problems
- Introduced the performance of pointing, surface accuracy and models construction
- Elevation pointing error needs more improvement and verification in servo control, encoder setup and models
- Both phase coherent and phase retrieve holography are adoped for pannel setting and gravity deformation model construciton. The surface accuracy is better than 0.3mm(RMS) at elevations around 53°. For higher and lower elevations we need more testing and verification for the accuracy improvements

Questions...