Analysis on the track unevenness and alidade temperature behavior of TM65m antenna

Li Fu, Quan-bao Ling, Rong-bing Zhao, Jinqing Wang, Xu-guang Geng, Yong-bin Jiang, Lin-feng Yu, Wei Gou 20th September,2016

Shanghai Astronomical Observatory, Chinese Academy of Sciences

Outline

The track unevenness and its effects

- The foundation settlement and track unevenness
- The effect of track unevenness on antenna pointing
 - FEM
 - Inclinometer measurement

The alidade temperature behavior

- Temperature acquisition system
- The distribution of temperature field
- The effect of thermal deformation on antenna pointing

• Further work

- The temperature behavior of backup structure
- The effect of wind on the antenna

The foundation settlement and track unevenness

- Leica DNA03 electronic level, invar leveling staff.
- Accuracy: ±0.3mm/km
- Method: closed level route

The foundation settlement and track unevenness

The foundation settlement :

- Jul. 2012~Jul. 2015, 11times
 - The foundation tends to even settlement
 - The reasons of the settlements are positive:
 - The variation of groundwater level
 - The settlement of reference point larger than base

The foundation settlement and track unevenness on 4 July, 2015:

- There are relevant between foundation settlements and track heights with variation of the azimuth angle.
- The track unevenness (RMS): 0.47mm

The effect of track unevenness on pointing——FEM

Inclinometer measurement system

- Leica Nivel220 electronic inclinometer:
 - Range: A:±311 ", B: ±518 ", C: ±619 ";
 - Resolution: 1 µ rad=0.2 "; Accuracy: A: ±1.3 ", B: ±3.9 ", C: ±9.7 ";
 - Zero stability: <0.97 " /°C; Sample speed: minimum 300ms ;
 - RS323 or RS485 interface; two-axis sensor

Fig. The antenna structure of TM65m on the right; a zoom of the inclinometer located on the upper part of the alidade on the left.

The format of data measured by inclinometer

- We compiled data acquisition software to record the inclinometer data and the format is shown as Table 1.
- The elevation tilt (y-tilt), cross-elevation tilt (x-tilt), azimuth and elevation angle, rotation velocity and so on were recorded simultaneously, which will be convenient to analyze data and modify pointing model.

DATE	TIME	X-TILT (mrad)	Y-TILT (mrad)	TEMP (°C)	AZ (°)	Vaz (°/s	EL (°)	Vel (°/s)
2015-7-29	10:34:01	0.029	-0.015	34.5	153.9993	0	87.9995	0
2015-7-29	10:34:02	0.03	-0.012	34.5	153.9993	0	87.9995	0
2015-7-29	10:34:03	0.037	-0.021	34.5	153.9993	0	87.9995	0
2015-7-29	10:34:04	0.042	-0.012	34.5	153.9993	0	87.9995	0
2015-7-29	10:34:05	0.038	-0.018	34.5	153.9993	0	87.9995	0
2015-7-29	10:34:06	0.035	-0.019	34.5	153.9993	0	87.9995	0
	-		•			-	•	-

Table 1. The format of data measured by inclinometer.

The track unevenness measured by inclinometer

- Date: June 17, 2015
- The black line: the azimuth rotation in clockwise direction.
- The red line: the azimuth rotation in counterclockwise direction.

- The black line: the azimuth rotation on July 9, 2016.
- The red line: the azimuth rotation on June 17, 2015.

The effect of track unevenness on pointing

 I_x , I_y —the readings from inclinometer sensors X and Y; θ —the magnitude of the azimuth axis tilt; ϕ -90 —azimuth angle toward the azimuth axis tilted ^[1].

- The simulation results show a good agreement with the theoretical analysis.
- The effect of track unevenness on the pointing accuracy is within ±4 arcsec.

The track unevenness— linear and nonlinear parts

The effect of track unevenness on pointing ——nonlinear part

- The left figure:
 - Black line: x tilt measured by the inclinometer
 - Red line: sinusoidal fit from the inclinometer measurement
- The right figure: residuals after subtracting the sinusoidal fit from the inclinometer measurement.
- Further work: creating an azimuth-track-level look-up table and adding it to pointing model to modify the effect of this nonlinear part on pointing.

Temperature acquisition system

- System components: thermometers, master node controllers, electricity supplies, computer and cables.
- Thermometer: DS18B20 digital thermometer , ±0.5 °C (temperature range of -10 °C to +85 °C).
- Location and number: totally 56 thermometers that were installed on the four sides named a, b, c and d of 14 nodes respectively.

Fig. The display interface measured temperature and installation positions of thermometers on the left; the schematic diagram of thermometer number on the right. 12

The distributions of temperature field of alidade

- Parked position: azimuth angle=155°, elevation angle=89°.
- Date: July 30, 2015 and February 9, 2016.
- Illustrations: green line is cross-elevation tilt with time and the others are variations of average node temperature (the average temperature of 4 sides of every node).

Fig. The variations of average temperature of nodes and cross-elevation tilt with time.

The distributions of temperature field of alidade

2015/7/30, 77°

Table 2. The comparison of results.

	Feb. 9	Jul. 30
The solar elevation angle	44°	77°
The length of sunshine	10.8 hrs	13.6 hrs
The maximum diurnal temperature difference	27.0 °C	14.6 °C

- Results:
 - In summer, the day-length is longer and the sunrise is earlier so the structural temperature rises smoothly.
 - However, shorter sunshine time and later sunrise contribute to the temperature variation per unit time is larger in winter.

The cross elevation tilt——FEM+Inclinometer

- The left figure: variations of node temperature and inclinometer with time.
- The right figure: the comparision between the inclinometer measurement and FEM.
- The temperature induced cross elevation pointing error: 1.7 arcsec /°C.

The effect of thermal deformation of alidade on pointing

- April 30, 2016 : fine, clear and calm day.
- Source: polestar, 2344+8226.
- Results:
 - good agreement pointing check and inclinometer measurement
 - Around 20 arcsec pointing error from 8:00 to 10:00 am

The relationship between inclinometer reading and azimuth and elevation

- Independence of the inclinometer reading on elevation
- Dependence of the inclinometer reading on azimuth

Further work

- 1. The temperature behavior of backup structure (36 sensors) and sub-reflector legs (12 sensors)
- Methods: FEM + Temperature measurement
- Aims^[2]:
 - Temperature induced the deformation of the primary reflector surface
 - Temperature induced the variation of the focal length

[2] Greve A, Bremer M, Penalver J, et al. Improvement of the IRAM 30-m Telescope from Temperature Measurements and Finite-Element Calculations. IEEE Transactions on antenna and propagation, 2005,53(2):851-858 18

Further work Wind vibration test system

Hardware:

 – 130-MC12A/AC220 Recorder, Multi-Channel, 12, Single DAS Enclosure, 220V

• Software:

- Command Line GUI, 130-SM
- 130 DAS's, Command Line
- REF TEK Interface

Accelerometer:

- SLJ100-FBA: single axis, tri-axis
- Test range: ±2g
- Dynamic range: >135dB
- Sentivity: 2.5v/g
- Noise: <10^{-6.75}g
- Bandwidth: 0~80Hz
- Zero drift: <100 μg/°C

Further work

2. The effect of wind on the antenna based on the accelerometer.

- **Methods:** FEM + Accelerometer + PSD + Pointing test
- Aims^[3~5]:
 - Wind induced the pointing error at elevation and cross-elevation directions.
 - Relative position relationship between the sub-reflector and the feed.

[3] P. Ries, T. R. Hunter, K. T. Constantikes, et al. Measurement and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector. Instrumentation and Methods for Astrophysics, 2011: 1-17.
[4] R. C. Snel, J. G. Mangum, J. W. M. Baars. Study of the Dynamics of Large Reflector Antennas with Accelerometers. IEEE Transactions on Antennas and Propagation Magazine, 2007, 4(49): 84-101.
[5] J. R. Blough, D. R. Smith, C. DeVries. Gathering Operating Vibration Data on the Nobeyama 45M Radio Telescope. SPIE-The International Society for Optical Engineering, 2001, 4359: 870-873.

