

ESA's Deep Space Antennas

Dr. Peter Droll, ESA

MetConf 19 – 24 Sept. 2016 Green Bank, WV, USA

- 1. ESA's Deep Space Antenna Network
- 2. Characteristic of the 35m Beam Wave Guide Antennas
- 3. Pointing Error Model and Pointing Calibration System
- 4. Pointing Performance
- 5. Ka-Band Rx-Tx Beam Offset Generation and Performance

ESA's Deep Space Antenna Network

DSA1 (New Norcia) Australia

Antennas are remote controlled from control centre at ESOC, Germany

"

DSA2 (Malargue) Argentina

Malargüe, Mendoza, Argentina

DSA2 (Cebreros) Spain

Peter Droll | 16/09/2016 | Slide 3

Missions supported by ESA's 35 m Antennas

Peter Droll | 16/09/2016 | Slide 4

ESA UNCLASSIFIED - For Official Use

European Space Agency

Operational Frequency Bands	Up to 32 GHz, Feeds with cryogenically cooled LNAs (X-Band, Ka-Band)
Uplink	20 kW Klystron amplifier @ X-Band 500 W klystron amplifier @ Ka-Band
Main reflector surface accuracy	< 0.30 mm RMS @ wind at 45/60km/h
Dynamic pointing accuracy (open loop pointing) to be achieved @ 99.7 % of time	 ≤ 5.5 mdeg @ wind 45 / 60 km/h ≤ 6.5 mdeg @ wind 50 / 70 km/h ≤ 20 mdeg @ wind 100 / 120 km/h
Lowest Antenna Eigenfrequency	> 2 Hz

35m BWG Antenna I (DSA3)

ESA UNCLASSIFIED - For Official Use

European Space Agency

35m BWG Antenna II

Servo Controller is based on fully digitally implemented Cascade Controller Structure:

- a. P for position controller
- b. PI controller for velocity controller
- c. Identical controller structure for Az and El

(..)com - commanded

(..)_{enc} - encoder

(..)_M - motor

- u commanded motor torque
- φ position (angle),
- φ' velocity

Peter Droll | 16/09/2016 | Slide 8

Alignment of panels with theodolite and photogrammetry measurements

Surface Accuracy – Performance under worst case conditions

Source of surface error	Surface accuracy [mm] RMS				Surface	Error	Budaet	for	
	Elevation angle [deg]				Main reflector surface				
	0	30)	90	4	accurac	у.		
Panel Manufacturing	0.081	0.08	31	0.081					
Panel Alignment	0.089	0.08	39	0.089					
Gravity (dead weight)	0.080	0.06	59	0.023					
Wind (50/70 km/h)	0.069	<u></u>		0.020					
Temperature gradient (dT = 1K)	0.138	0.30 -	ector -Pai	nels = Ma	ain-Ref	flector To	otal ——	Total w/o wind a	nd thermal
Gravity deformation (adjusted	0.118	0.00							
at 45 ⁰)	0.166	E 0.25 -							
Wind load (50/70 km/h)	0.113	IS [n							
Temperature gradient		NR 0.20	·						
Total (RSS)	0.304	curac	Measur	ed w/o					
		0.15 -	_wind ar						
Simulation results and measuresults are combined to deter performance under worst case	urement rmine se condition	S.				Measured wind and	d w/o thermal		_
		+ cu.u ()	15	30	45	60	75	90

Peter Droll | 16/09/2016 | Slide 10

Elevation Angle [deg]

The systematic pointing error model (SPEM) of the ESA DSAs consists of the following 10 terms:

SPEM Coefficient	Description	Az Correction Formula	Elevation Correction Formula	Determined Value Ka RHCP, example, (mdeg)
IA	Azimuth encoder offset	IA		-31.8
Æ	Elevation encoder offset		IE	81.7
DTF	Flexure due to gravity		$DTF \cdot \cos(El)$	-80.0
AN	Tilt of azimuth axis in north direction	$AN \cdot \tan(El) \cdot \sin(Az)$	$AN \cdot \cos(Az)$	5.7
AW	Tilt of azimuth axis in west direction	$AW \cdot \tan(El) \cdot \cos(Az)$	$-AW \cdot \sin(Az)$	6.5
CA	Collimation of RF axis	$\frac{CA}{\cos(El)}$		5.9
NRX	This is a horizontal shift between the elevation axis and the azimuth axis.	NRX	$NRX \cdot \sin(El)$	-0.04
NRY	This is a vertical shift between the elevation axis and the azimuth axis.	$-NRY \cdot \tan(El)$	$-NRY \cdot \cos(El)$	10.3
CRX1	Polarization dependent beam squint due to the dichroic plate and elliptical mirrors.	$\frac{CRX1 \cdot \sin(Az - El)}{\cos(El)}$	$\frac{-CRX1 \cdot \cos(Az - El)}{\cos(El)}$	-0.5
CRY1	Polarization dependent beam squint due to the dichroic plate and elliptical mirrors.	$\frac{-CRY1 \cdot \cos(Az - El)}{\cos(El)}$	$\frac{-CRY1 \cdot \sin(Az - El)}{\cos(El)}$	-0.9

Peter Droll | 16/09/2016 | Slide 12

Pointing Calibration System I

- Pointing Calibration System supports pointing measurements in X, K, Ka-Rx and Ka-Tx.
- Fully automated scanning of pre-selected radio stars and semiautomated determination of SPEM coefficients.
- Powerful graphical user interface
- Currently limited to SPEM with 10 coeff.

Pointing Calibration System II

2 Scanning methods available in PCS:

Pointing Calibration System III

- Distribution of radio star measurements.
- Arrows show direction of measured pointing offset.
- Measurements cover well the hemisphere
- Measurements are input for SPEM coefficient determination
- Typically 100 300 measurements required for good model

Peter Droll | 16/09/2016 | Slide 15

Pointing Calibration System IV

- SPEM has to be determined for each frequency band and polarisation.
- For proper determination of SPEM coefficients, full coverage of hemisphere is important.

Antenna Pointing Performance, MLG1

- 32 GHz, RHCP
- 290 measurements over 4 days
- Clear sky, cold and dry weather
- approx. 80% of measurements better
 2.25 mdeg

Histogram for Ka-RHC Measurements (MLG1) Total: 290 Measurements using 33 different radio stars over several days (no wind and clear sky)

	Max. total PE
32 GHz, RHCP, no wind, measured	3.8 mdeg
32 GHz, RHCP, wind 45/60 km/h, extrapolated	5.3 mdeg

Peter Droll | 16/09/2016 | Slide 17

Generating Rx-Tx Squint at 32 GHz

- Spacecraft in movement generates an offset between RX and the TX beams (RX-TX squint)
- Worst case Receive (Rx) Transmit (Tx) offset for future ESA missions (BepiColombo) ~ 40 mdeg

Peter Droll | 16/09/2016 | Slide 18

RX-TX Beam Offset Generation I

• Rx-Tx offset compensation concept: M8/M12 BWG mirrors tilting system

RX-TX Beam Offset Generation II

- Accurate two-axes M8/M12 rotation implemented by linear actuators
- Relationship between mirror tilts & beam aberration angles (θ_{BA} , φ_{BA}) given by 16 degrees of freedom

$$\begin{bmatrix} u_{M8} \\ v_{M8} \\ u_{M12} \\ v_{M12} \end{bmatrix} = \begin{bmatrix} C_{M8}^{11} & C_{M8}^{12} & C_{M8}^{13} & C_{M8}^{14} \\ C_{M8}^{21} & C_{M8}^{22} & C_{M8}^{23} & C_{M8}^{24} \\ C_{M12}^{31} & C_{M12}^{32} & C_{M12}^{33} & C_{M12}^{34} \\ C_{M12}^{41} & C_{M12}^{42} & C_{M12}^{43} & C_{M12}^{44} \end{bmatrix} * \begin{bmatrix} u_{BA} \\ v_{BA} \\ u_{BA}^{2} \\ u_{BA}^{2} \\ v_{BA}^{2} \end{bmatrix} \qquad u_{BA} = \sin \theta_{BA} \cos \varphi_{BA}$$

• The mirror tilting occurs after SPEM correction to automatically compensate systematic pointing error contributions

Peter Droll | 16/09/2016 | Slide 20

ESA UNCLASSIFIED - For Official Use

opean Space Agency

RX-TX Beam Offset Generation III

 BWG design intrinsically introduces beam shifts (<u>frequency and polarization dependent</u>) → SPEM compensation based on CRX, CRY coefficients

> $dXEl = CRX * \cos(Az - El) - CRY * \sin(Az - El)$ $dEl = -CRX * \sin(Az - El) - CRY * \cos(Az - El)$

- Design of BWG aims at minimizing differences between the possible configurations
- Remaining difference can however not be neglected

Peter Droll | 16/09/2016 | Slide 21

Measuring of Rx-Tx beam offset & Ka-TX gain loss

- Ka-Tx steering in open loop to verify:
 - Pointing accuracy
 - Gain degradation
- Ka-Rx is the "zero" pointing reference
- Both Ka-TX\x and Ka-Rx in "receive" mode (radiometer)
- No simultaneous measurements at Ka-RX/TX

Peter Droll | 16/09/2016 | Slide 22

Rx-Tx beam steering performance I

No commanded offset → pointing error due to systematic effects (polarisation dependency,

residual mechanical misalignment) -> CRX = 0.54 mdeg, CRY = 0.26 mdeg

Need for more meas. to better cover full hemisphere

Rx-Tx beam steering performance II

- Commanded offset → anomaly detected as gain increase for certain offset directions (i.e.
 XEL direction)
- Worst case gain loss (black line) is worse than expected \rightarrow due to meas. uncertainty?

Peter Droll | 16/09/2016 | Slide 24

ESA UNCLASSIFIED - For Official Use

esa

Rx-Tx beam steering performance III

- esa
- Commanded offset
 → systematic residual pointing error vectors in a "vortex" around 0,0
- Due to not optimum C-matrix coefficients?
- Additional losses due to unexpected large pointing errors → -1.5 dB at 30 mdeg

Peter Droll | 16/09/2016 | Slide 25

Next Step: Optimizing Ka Rx-Tx pointing

$$\begin{bmatrix} u_{M8} \\ v_{M8} \\ u_{M12} \\ v_{M12} \end{bmatrix} = \begin{bmatrix} C_{M8}^{11} & C_{M8}^{12} & C_{M8}^{13} & C_{M8}^{14} \\ C_{M8}^{21} & C_{M8}^{22} & C_{M8}^{23} & C_{M8}^{24} \\ C_{M12}^{31} & C_{M12}^{32} & C_{M12}^{33} & C_{M12}^{34} \\ C_{M12}^{41} & C_{M12}^{42} & C_{M12}^{43} & C_{M12}^{44} \end{bmatrix} * \begin{bmatrix} u_{BA} \\ v_{BA} \\ u_{BA}^{2} \\ v_{BA} \end{bmatrix} u_{BA} = \sin \theta_{BA} \cos \varphi_{BA}$$

 $\begin{array}{c} \text{Combination} \\ \text{dependent} \\ \text{coefficients} \\ \text{Feasible?} \end{array} \xrightarrow{\left[\begin{array}{c} \Delta C_{M8}^{^{11}} & \Delta C_{M8}^{^{12}} & \Delta C_{M8}^{^{13}} & \Delta C_{M8}^{^{14}} \\ \Delta C_{M8}^{^{21}} & \Delta C_{M8}^{^{22}} & \Delta C_{M8}^{^{23}} & \Delta C_{M8}^{^{24}} \\ \Delta C_{M12}^{^{31}} & \Delta C_{M12}^{^{32}} & \Delta C_{M12}^{^{33}} & \Delta C_{M12}^{^{34}} \\ \Delta C_{M12}^{^{41}} & \Delta C_{M12}^{^{42}} & \Delta C_{M12}^{^{43}} & \Delta C_{M12}^{^{44}} \end{array} \right]}$

Current limitations:

- Same coefficients for all combinations Rx (RHC, LHC and TX (RHC, LHC)
- Coefficients are based on a symmetric conditions, the different combinations hit however the elliptical mirror NOT in its vertex.

➔Introduction of "corrections" for each/some coefficient to consider the different combinations