New tools for SRT metrology: laser tracker & simulator for photogrammetric survey

Serra G. ¹, Buffa F.¹, Deiana G. L. ¹, Marongiu P. ¹, Pisanu T. ¹, Poppi S. ¹, Urru E. ¹, G. Sanna²

¹Astronomical Observatory of Cagliari (OAC) - Sardinia Radio Telescope (SRT) Italian National Institute for Astrophysics (INAF)
²University of Cagliari, Department of Civil, Environmental Engineering and Architecture, Italy
AGENDA

- SRT optical configuration
- Laser tracker measurement of SRT subreflector
- Simulation tool for close range photogrammetric survey for the SRT primary reflector
- Summary and discussion
SRT optical configuration

7.9 m-dia elliptical reflector

64 m-dia Parabolic reflector

3 m-dia elliptical reflectors
ACTIVE OPTICS

Primary reflector actuators

• 1116 electro-mechanical actuators (maximum stroke ± 15 mm)
• from a shaped profile to a parabolic profile (increase primary focus operating frequency)
• correct deformations induced by gravity

Subreflector actuators

• 6 electro-mechanical actuators able to:
 • translate sub-reflector paralelly (max ± 50 mm) and orthogonally (max ± 110 mm) to elevation axes, and long optical axis (max ± 110 mm)
 • Rotate sub-reflector around the same three axis (max ± 0.25 arcsec)
• Correct primary-secondary mirror misalignment and focal distance
• Compensate the rigid-body motions of the main mirror (those that primary mirror actuators can not correct)

SRT optical configuration
Laser tracker (LT) measurement of the SRT subreflector
PRIMARY–SUBREFLECTOR ALIGNMENT

SIGMA 3D measurements (2012) with LT (Faro SN 3301)

- Alignment of the reflectors best fit axes at @ 45° elevation
- Measurements at 7 different elevations (step of 15° up to 90°, 45° as reference alignment)
- **look-up table (LUT)** corrections for the gravity deformations of the subreflector at all the elevation range by a polynomial fitting

Temporary subreflector LUT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>-39.99</td>
<td>2.60</td>
<td>540</td>
</tr>
<tr>
<td>75°</td>
<td>-25.36</td>
<td>2.31</td>
<td>346</td>
</tr>
<tr>
<td>60°</td>
<td>-11.72</td>
<td>1.49</td>
<td>156</td>
</tr>
<tr>
<td>45°</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>8.91</td>
<td>-1.77</td>
<td>-120</td>
</tr>
<tr>
<td>15°</td>
<td>14.96</td>
<td>-3.89</td>
<td>-196</td>
</tr>
<tr>
<td>5°</td>
<td>16.88</td>
<td>-5.56</td>
<td>-221</td>
</tr>
</tbody>
</table>

Y is orthogonal to the elevation axis
Z is parallel to the antenna optical axis
X is parallel to the elevation axis

Laser tracker measurement of SRT subreflector
LUT was updated by astronomical observations:

- **Z- shift for focus adjustment**
- **X-rotation and Y-shift to compensate for the rigid-body motion of the primary reflector (not being compensated by the primary mirror actuators once the active surface was enabled)**

Current subreflector LUT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>-41,23</td>
<td>2,60</td>
<td>531</td>
</tr>
<tr>
<td>75°</td>
<td>-22,33</td>
<td>2,31</td>
<td>368</td>
</tr>
<tr>
<td>60°</td>
<td>-3,73</td>
<td>1,49</td>
<td>214</td>
</tr>
<tr>
<td>45°</td>
<td>10,34</td>
<td>0,00</td>
<td>75</td>
</tr>
<tr>
<td>30°</td>
<td>24,07</td>
<td>-1,77</td>
<td>-10</td>
</tr>
<tr>
<td>15°</td>
<td>29,71</td>
<td>-3,89</td>
<td>-89</td>
</tr>
</tbody>
</table>

Y is orthogonal to the elevation axis
Z is parallel to the antenna optical axis
X is parallel to the elevation axis

Laser tracker measurement of SRT subreflector
NEW LASER TRACKER MEAS. ON THE SUBREFLECTOR

Leica Absolute Tracker AT 402 (2016)

LT and target reflector features
- Remotely controlled via Wireless or W-LAN connection
- Digital camera, whose software is able to recognise/track the targets
- Angular accuracy: \(\pm 15 \, \mu \text{m} + 6 \, \mu \text{m/m} \)
- Distance accuracy: \(\pm 10 \, \mu \text{m} \)

<table>
<thead>
<tr>
<th>Target reflectors</th>
<th>Acceptance Angle</th>
<th>Use</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.05 mm ± 0.0025 mm</td>
<td>± 30°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.35 mm ± 0.0025 mm</td>
<td>± 30°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.35 mm ± 0.50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed installation</td>
<td></td>
<td></td>
<td>cheap (~10 €)</td>
</tr>
</tbody>
</table>

- Check the motions of the subreflector
- Define a procedure to build a suitable reference frame for our LT meas.
- Check the current subreflector look-up table

Laser tracker measurement of SRT subreflector
LASER TRACKER MEASUREMENT SETUP

April 2016

4 targets on Gregorian room top

Remote controlled by W-LAN

Laser Tracker AT 402

1 target for each quadrupod leg

10 targets on subreflector

18 target reflectors 6 mm dia P0,P1,...,P17

4 targets on Gregorian room top

18 target reflectors 6 mm dia P0,P1,...,P17

Remote controlled by W-LAN
April 2016, first LT measurement

- antenna at 45° Elevation (best primary-subreflector alignment from Sigma 3D meas.)
- With LUT enabled we moved remotely the actuators by 5 steps of 10 mm in X, Y and Z direction
- Targets on the subreflector depicts 3D crosses
- After a roto-translation the 3D crosses were referred to the mechanical reference frame (by exploiting P0, P1, P2, P3, P4 and P5 mechanical positions as reference points)

1. Targets moved consistently with the commanded positions (same axis, sign and amount with 0.3 mm uncertainty)

2. Roto-translation matrix to transform all the target coordinates to the mechanical reference frame of the subreflector
VALIDATION OF THE SUBREFL. REFERENCE FRAME

April 2016: second LT measurement

Schedule

- Measurements at 6, 15, 25, 35, 45, 55*, 65, 75, 85, 90 deg of the antenna elevation with
 + Subreflector LUT disabled (actuators parked) ➔ OFF
 + Subreflector LUT enabled (actuator working) ➔ ON

Data processing

- Each dataset (one for each target on the subreflector) was roto-translated in the mechanical reference frame of the subreflector (defined before)
- Bias due to the small movements of the LT support were deleted from each dataset (bias detected thanks to the other targets)
- Reference elevation 55 deg (arbitrarily chosen as best alignment)
Laser tracker measurement of SRT subreflector

VALIDATION OF THE SUBREFL. REFERENCE FRAME

April 2016: second LT measurement

1. Subreflector motions are consistent with those commanded
2. Our mechanical reference frame is consistent with the reference frame of the subreflector
VALIDATION OF THE SUBREFLECTOR LUT

April 2016: second LT measurement

Residual misalignments w.r.t. 55° el

Y-axis shift \(\rightarrow \) 5 mm @ 15° el and up -10 mm @ 90° el
Z-axis shift \(\rightarrow \) Up to -3 mm @ 15° el

X-axis rotations \(\rightarrow \) 56 arcsec @ 15° el, up -80 arcsec @ 90° el
Simulation tool
for close range photogrammetric survey

In collaboration with Prof. G. Sanna

University of Cagliari, Department of Civil, Environmental Engineering and Architecture, Italy
Photogrammetry surveys on large antennas are not trivial task

We have implemented a simulation pipeline (3D-models of the antenna is needed) able to:

- select the camera parameters, the image acquisition angle
- Set the crane position or a configuration of fixed camera to be installed on the antenna (on robotic sled or rail)
- evaluate different scenarios and select those providing the best measurement accuracy

In order to generate synthetic images we developed two software platform based on:

- Matlab tool
- Python-blender
MATLAB TOOLBOX VS PYTHON BLENDER

Matlab toolbox
- simple 3D model (targets like point lists)
- target recognition is not required (reference points)
- fast (min) \rightarrow less accurate synthetic images

Python Blender
- High resol. 3D model (targets like physical object)
- Coded target recognition (images orientation)
- slow (hr) \rightarrow photorealistic images

Simulation tool for close-range photogrammetry
MATLAB TOOLBOX

In this preliminary study we use matlab toolbox (python bender has not tested yet) to estimate the errors in a photogrammetric survey (for example due to different camera positions or bundle adjustment engine).

We have considered two different simulated scenarios by using and ideal 3D model of SRT (without any surface deformations), but adding statistical errors.

“Scenario A”
One camera moved on the space (“real” SRT survey Sigma 3D)

“Scenario B”
Combinations of many camera installed on the antenna

Simulation tool for close-range photogrammetry
Different bundle engines with the same input scenario (here a matlab point list of B-scenario) may give different results:

Maps of error on the target positions

In a real photogrammetric survey this sort of errors are mixed with the surface deformations to be measured. Thus, they can not be distinguished.
EVALUATION OF SCENARIOS

A criterion to evaluate the best scenario simulated is to calculate radially the averaged rms errors on each sampled ring (about 2 samples for each ring)

AICON B.A: RMSE <= 0.2 mm up to 20 m
MICMAC B.A. RMSE <= 0.2 mm around 20 m
Laser tracker measurement of SRT subreflector

- Recent LT measurement shows residual misalignments of the subreflector w.r.t. 55° el
 - Y-shift 5 mm at 15° el and up to -10 mm at 90° el
 - Z-shift 3 mm at 15°
 - X-axis rotation ~56 arcsec @ 15° el, up ~ -80 arcsec @ 90° el

- New measurements have to be scheduled to:
 - figure out if such as misalignment (Y-shift at the lower and the higher elevations) can be the cause of the asymmetric features on the SRT beam at K-band frequencies
 - Create an absolute reference frame by using calibrated targets on the known points of the top of gregorian room
 - Refine the LUT so that only X-rotation and Z-shift of the subreflector are used for correcting the primary mirror rigid-body motions
 - Updating the pointing model in a such way to compensate for the Y-shift due to the primary mirror rigid-body motions
Simulation tool for close range photogrammetric survey

- Simulating a photogrammetric survey is useful to find the proper scenario which minimizes the RMS error of the measurement set, over all in a large telescopes where you need a crane or fixed camera to take a lot of pictures.
- We have presented a flexible simulation tool which allows one to choose the best possible photogrammetric scenario in terms of minimum RMS error due to the measurement set-up.
- New tests are needed to validate the tool also with the open source SW platform based on Python-Blender and in other different scenarios as well.
THANK YOU FOR YOUR ATTENTION

Any questions?