High Precision Calibration of Wide Bandwidth Observations with the GBT

Ronald J Maddalena
NRAO, Green Bank
July 26 2007

Shelly Hynes (Louisiana School for Math, Science and the Arts)
Charles Figura (Wartburg College)
Chelen Johnson (Breck School)
NRAO-GB Scientific and Engineering staff
Typical Position-Switched Calibration Equation

\[S(\nu) = \left(\frac{2k}{\eta_A(\nu, \text{Elev}) \cdot \text{Area}_p} \right) \cdot T_A(\nu) \cdot e^{\tau(\nu, t) \cdot A(\text{Elev}, t)} \]

\[T_A(\nu) = \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}(\nu)} \right) \cdot T_{\text{Sys}}^{\text{Ref}} \]

\[T_{\text{Sys}}^{\text{Ref}} = \left(\frac{\text{Ref}(\nu)}{\text{Ref}_{\text{On}}(\nu) - \text{Ref}_{\text{Off}}(\nu)} \cdot T_{\text{Cal}}(\nu) \right)_{\text{BW}} \]

\[A(\text{Elev}, t) = \text{Air Mass} \]
\[\tau(\nu, t) = \text{Atmospheric Zenith Opacity} \]
\[T_{\text{cal}} = \text{Noise Diode Temperature} \]
\[\text{Area} = \text{Physical area of the telescope} \]
\[\eta_A(\nu, \text{Elev}) = \text{Aperture efficiency (point sources)} \]
\[T_A(\nu) = \text{Source Antenna Temperature} \]

\[S(\nu) = \text{Source Flux Density} \]
\[\text{Sig}(\nu), \text{Ref}(\nu) = \text{Data taken on source and on blank sky (in units backend counts)} \]
\[\text{On,Off} = \text{Data taken with the noise diode on and off} \]
\[T_{\text{sys}} = \text{System Temperature averaged over bandwidth} \]
Position-Switched Calibration Equation

\[S(\nu) = \left(\frac{2k}{\eta_s(\nu, \text{Elev}) \cdot \text{Area}_p} \right) \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}(\nu)} \right) \left(\frac{\text{Ref}(\nu)}{\text{Ref}_\text{on}(\nu) - \text{Ref}_\text{off}(\nu)} \right) T_{\text{cal}}(\nu) \cdot e^{T(\nu) \cdot A(\text{Elev})} \]

Sources of uncertainties

\[\left(\frac{\Delta S}{S} \right)^2 = \left(\tau \cdot \Delta A \right)^2 + \left(A \cdot \Delta \tau \right)^2 + \left(\frac{\Delta T_{\text{cal}}}{T_{\text{cal}}} \right)^2 + \left(\frac{\Delta \eta}{\eta} \right)^2 \]

• 10-15% accuracy have been the ‘standard’
• Usually, errors in \(T_{\text{cal}} \) dominate
• Goal: To achieve 5% calibration accuracy without a significant observing overhead.
Air Mass Estimates

Depends upon density and index of refraction as a function of height

But, how can one get this information?
Vertical Weather Data

- Provided by the national weather services via FTP
- 60 hr forecasts (ETA model), updated every 12 hrs
- For each hour, provides as a function of height above the ground:
 - Temperature, Pressure, Dew Point, Cloud Cover, …
- ~40 heights that extend well into the stratosphere
- One can derive as a function of height:
 - Density
 - Index of refraction
 - Absorption coefficient (dry air, water – continuum & line, oxygen line, hydrosols) (Liebe model)
Vertical Weather Data
Air Mass Estimates

- Air Mass derived from the vertical values of density & index of refraction.
- For 1% calibration error, require A to ~0.1

![Graph showing Air Mass for 5/1/2004 to 5/1/2005 at 5° Elevation]

- Probably should use weather dependent Air Mass for elevations below 5 deg
- Probably can ignore weather dependency above 5 deg.
Air Mass Estimate

- Air Mass traditionally modeled as $1/\sin(\text{Elev})$
- For 1% calibration accuracy, must use a better model below 15 deg.

$$A = -0.0234 + \frac{1.014}{\sin\left(\text{Elev} + \frac{5.18}{\text{Elev} + 3.35}\right)}$$

- Good to 1 deg
- Use $1/\sin(\text{Elev})$ above 60 deg
- Coefficients are site specific, at some low level
Air Mass Estimates

100 m

-5 to +20 arcsec
Opacity Estimates

- Vertical weather data provides absorption as a function of height

\[\tau(\nu,t) = \int_0^\infty \left(\kappa_{\text{Dry}}(\nu,t) + \kappa_{O_2}(\nu,t) + \kappa_{\text{Water_cont}}(\nu,t) + \kappa_{\text{Water_line}}(\nu,t) + \kappa_{\text{hydrosols}}(\nu,t) \right) dH \]

\[T_{\text{Sys}}(\text{Elev,}\nu,t) \cong T_{\text{rcvr}}(\nu) + T_{\text{spill}}(\text{Elev}) + T_{\text{cmb}} e^{-\tau(\nu,t)A(\text{Elev})} + \int_0^\tau T(H,t) \cdot e^{\tau(h,\nu,t)} d\tau \]
Opacity Estimates

- Are derived opacities accurate? Comparisons using tipping radiometers have difficulties
 - Must do multiple tips for wideband observations
 - Tips take up telescope time
 - Requires knowing T_{cal} to high accuracy, which requires knowing τ.
 - Some dedicated tippers do not provide enough information to estimate τ near the 22 GHz water line
 - Requires a representative T_{Atm} that is good to ~5 K

\[T_{\text{Atm}} \approx \frac{\int \kappa(H) \cdot T(H) \cdot dH}{\int \kappa(H) \cdot dH} \]
Comparison of measured and estimated 22 GHz T_{sys}

- For 1% calibration accuracy, requires τ to 0.01
- Implies forecasted and actual T_{sys} should be within 3 K
- Current model sufficient at $\tau < 0.1$
- Overestimates contribution from hydrosols. Not unexpected.
Noise Diode Estimates

- Traditionally used hot-cold load measurements
 - Provide ~10% accuracy
 - Frequency resolution sometimes wider than frequency structure in T_{rcvr} or T_{cal}
 - Time consuming
 - Systematics/Difficulties
 - Loads must be opaque
 - Frost forming on LN$_2$ loads
 - Linearity ($T_{Hot} \gg T_{Cold}$)
 - Observers can’t do their own Hot-Cold tests
Noise Diode Estimates

- Instead, we recommend an On-Off observation
 - Use a point source with known flux -- polarization should be low or understood
 - Use the same exact hardware, exact setup as your observation. (i.e., don’t use your continuum pointing data to calibrate your line observations.)
 - Observations take ~5 minutes per observing run
 - Staff take about 2 hrs to measure the complete band of a high-frequency, multi-beam receiver.
 - Resolution sufficient: 1 MHz, sometimes better
 - Accuracy of ~ 1%, mostly systematics.
Noise Diode Estimates

\[S(\nu) = \left(\frac{2k}{\eta_A(\nu, \text{Elev}) \cdot A_p} \right) \cdot \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}(\nu)} \right) \cdot \left(\frac{\text{Ref}(\nu)}{\text{Ref}_{\text{On}}(\nu) - \text{Ref}_{\text{Off}}(\nu)} \right) \cdot \text{T}_{\text{Cal}}(\nu) \cdot e^{\tau(\nu) \cdot A} \]

Remove Averaging, Solve for T_{cal}

\[T_{\text{Cal}}(\nu) = \frac{\eta_A(\nu, \text{Elev}) \cdot \text{Area}_p}{2k \cdot e^{\tau(\nu) \cdot A}} \cdot \left(\frac{\text{Ref}_{\text{On}}(\nu) - \text{Ref}_{\text{Off}}(\nu)}{\text{Sig}(\nu) - \text{Ref}(\nu)} \right) \cdot S(\nu) \]
Noise Diode Estimates

X-band Low Cals
Right-Circular Polarization

S-band Low Cals
Y-Linear Polarization
Position-Switched Calibration Equation

\[
S(\nu) = \left(\frac{2k}{\nu_A(\nu, \text{Elev}) \cdot \text{Area}_p} \right) \cdot \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}(\nu)} \right) \cdot \left(\frac{\text{Ref}(\nu)}{\text{Ref}_{\text{on}}(\nu) - \text{Ref}_{\text{off}}(\nu)} \right) \cdot T_{\text{cal}}(\nu) \cdot e^{\nu(\nu) - A(\text{Elev})}
\]

Baseline structure

\[
\text{Baselines}(\nu) = \frac{T_A + T_{\text{atm}}^{\text{Sig}} - T_{\text{atm}}^{\text{Ref}}}{\langle T_{\text{sys}} \rangle_{\text{BW}}} \cdot \left\{ \left(T_{\text{recvr}} + \frac{T_{\text{cal}}}{2} \right)_{\text{BW}} - T_{\text{recvr}}(\nu) - \frac{T_{\text{cal}}(\nu)}{2} \right\}
\]

Assumption of linearity

\[
S \propto \text{Sig} - \text{Ref}
\]
Baseline Structure

![Graph showing antenna temperature versus frequency with various markers and annotations.](image-url)
Baseline Shapes

\[S(\nu) = \left(\frac{2k}{\eta_A(\nu, \text{Elev}) \cdot A_p} \right) \cdot \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}(\nu)} \right) \cdot \frac{\text{Ref}(\nu)}{\text{Ref}_{\text{on}}(\nu) - \text{Ref}_{\text{off}}(\nu)} \cdot T_{\text{Cal}}(\nu) \cdot e^{\tau(\nu) \cdot A} \]

Remove Averaging – Vector Calibration

\[S(\nu) = \left(\frac{2k}{\eta_A(\nu, \text{Elev}) \cdot A_p} \right) \cdot \left(\frac{\text{Sig}(\nu) - \text{Ref}(\nu)}{\text{Ref}_{\text{on}}(\nu) - \text{Ref}_{\text{off}}(\nu)} \right) \cdot T_{\text{Cal}}(\nu) \cdot e^{\tau(\nu) \cdot A} \]

- Traditional equation OK for narrow bandwidth observations
- Traditional provides good calibration only at band center
- Vector algorithm provides good calibration across wide bandwidths
- Vector algorithm is substantially nosier when \(T_A \neq 0 \)

\[\sigma^2 \approx \frac{1}{BW \cdot t} \left(\frac{T_A^2}{2} + \frac{T_{\text{sys}}^2}{2} + \frac{T_{\text{sys}}^2 T_A}{T_{\text{Cal}}} \right) \]

- Smooth \(\text{Ref}_{\text{on}} - \text{Ref}_{\text{off}} \) – use Savitzky-Golay smoothing
Non-linearity

- If system is linear,
 - $P_{out} = B \times P_{in}$
 - $(\text{Sig}_{on} - \text{Sig}_{off}) - (\text{Ref}_{on} - \text{Ref}_{off}) = 0$

- Model the response curve to 2nd order:
 - $P_{out} = B \times P_{in} + C \times P_{in}^2$

- Our ‘On-Off’ observations of a calibrator provide:
 - Four measured quantities: Ref_{off}, Ref_{on}, Sig_{off}, Sig_{on}
 - T_A From catalog
 - Four desired quantities: B, C, T_{cal}, T_{sys}

- It’s easy to show that:
 - $C = \left[(\text{Sig}_{on} - \text{Sig}_{off}) - (\text{Ref}_{on} - \text{Ref}_{off}) \right] / (2T_A T_{cal})$

- Thus:
 - Can determine if system is sufficiently linear
 - Can correct to 2nd order if it is not
Non-linearity

$$(\text{SigOn-SigOff}) - (\text{RefOn-RefOff})$$

$\text{Power In} \rightarrow$
Summary

- To obtain few percent calibration accuracy
 - Wide bandwidths require frequency dependent opacities, efficiencies, T_{sys}, and T_{cal}.
 - New weather-independent model for air mass is usually sufficient
 - Opacities from vertical, forecasted weather data sufficient for medium to low-opacity conditions
 - Simple observation of calibrator provides high accuracy, high frequency resolution T_{cal}.
 - Assumptions of traditional on-off calibration algorithm introduces baseline shapes for wide bandwidth observations. Should use ‘vector’ algorithms.
 - 2nd order non-linearity -- measurable (by-product of T_{cal} observation) and correctable. Might be significant.
Typical Position-Switched Calibration Equation

\[S(\nu) = \left(\frac{2k}{\eta_A(\nu, Elev) \cdot Area_p} \right) \cdot T_A(\nu) \cdot e^{\tau(\nu, t) \cdot A(Elev, t)} \]

\[T_A(\nu) = \left(\frac{Sig(\nu) - Ref(\nu)}{Ref(\nu)} \right) \cdot T_{Sys}^{Ref} \]

\[T_{Sys}^{Ref} = \left(\frac{Ref(\nu)}{Ref_{On}(\nu) - Ref_{Off}(\nu)} \cdot T_{Cal}(\nu) \right)_{BW} \]

\[T_{Sys}^{Ref}(Elev, \nu, t) \cong T_{rcvr}(\nu) + T_{spill}(Elev) + T_{cmb} e^{-\tau(\nu, t) \cdot A(Elev)} + T_{Atm}(\nu, t) \cdot (1 - e^{-\tau(\nu, t) \cdot A(Elev, t)}) \]

A(Elev, t) = Air Mass
\(\tau(\nu, t) = \) Atmospheric Zenith Opacity
Area = Physical area of the telescope
\(\eta_A(\nu, Elev) = \) Aperture efficiency (point sources)
\(T_A(\nu) = \) Source Antenna Temperature
S(\nu) = Source Flux Density
Sig(\nu), Ref(\nu) = Data taken on source and on blank sky (in units backend counts)

On, Off = Data taken with the noise diode on and off
\(T_{sys}(\nu, Elev, t) = \) System Temperature
\(T_{CMB} = \) Cosmic Microwave Background
\(T_{rcvr}(\nu) = \) Receiver Temperature
\(T_{spill}(Elev) = \) Antenna Spillover
\(T_{Atm}(\nu, t) = \) Representative temperature of the atmosphere